首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 563 毫秒
1.
We compute the helicity amplitudes for bosonboson scattering at high energy due to the operatorsO BΦ,O WΦ andO UB , and we derive the corresponding unitarity bounds. Thus, we provide relations between the couplings of these operators and the corresponding New Physics thresholds, where either unitarity is saturated or new degrees of freedom are excited. We compare the results with those previously obtained for the operatorsO W andO UW and we discuss their implications for direct and indirect tests at present and future colliders. The present treatment completes the study of the unitarity constraints for all blind bosonic operators.  相似文献   

2.
3.
4.
HiggsSignals is a Fortran90 computer code that allows to test the compatibility of Higgs sector predictions against Higgs rates and masses measured at the LHC or the Tevatron. Arbitrary models with any number of Higgs bosons can be investigated using a model-independent input scheme based on HiggsBounds. The test is based on the calculation of a $\chi ^2$ measure from the predictions and the measured Higgs rates and masses, with the ability of fully taking into account systematics and correlations for the signal rate predictions, luminosity and Higgs mass predictions. It features two complementary methods for the test. First, the peak-centered method, in which each observable is defined by a Higgs signal rate measured at a specific hypothetical Higgs mass, corresponding to a tentative Higgs signal. Second, the mass-centered method, where the test is evaluated by comparing the signal rate measurement to the theory prediction at the Higgs mass predicted by the model. The program allows for the simultaneous use of both methods, which is useful in testing models with multiple Higgs bosons. The code automatically combines the signal rates of multiple Higgs bosons if their signals cannot be resolved by the experimental analysis. We compare results obtained with HiggsSignals to official ATLAS and CMS results for various examples of Higgs property determinations and find very good agreement. A few examples of HiggsSignals applications are provided, going beyond the scenarios investigated by the LHC collaborations. For models with more than one Higgs boson we recommend to use HiggsSignals and HiggsBounds in parallel to exploit the full constraining power of Higgs search exclusion limits and the measurements of the signal seen at $m_H\approx 125.5$  GeV.  相似文献   

5.
Feynman's integral is defined with respect to a pseudomeasure on the space of paths: for instance, letC be the space of pathsq:T?? → configuration space of the system, letC be the topological dual ofC; then Feynman's integral for a particle of massm in a potentialV can be written where $$S_{\operatorname{int} } (q) = \mathop \smallint \limits_T V(q(t)) dt$$ and wheredw is a pseudomeasure whose Fourier transform is defined by for μ∈C′. Pseudomeasures are discussed; several integrals with respect to pseudomeasures are computed.  相似文献   

6.
The equations governing geometrical objects in ? space are written in terms of operators adapted to families of left shear-freeσ 0= 0) cross sections of complexified null infinity (C I +). The concept of ?-conformai weight (HCW) is introduced, and a derivative operatorI a , which is closely connected with the covariant derivative but which (unlike the covariant derivative) maps objects having well-defined HCW to other such objects, is defined. A function ?, derived from the Gaussian curvature of left shear-free slicings ofC I + and having a well-defined HCW, is shown to contain all the curvature information for ? space.  相似文献   

7.
We present an implementation of the vector boson pair production processes $ZZ$ , $W^+W^-$ and $WZ$ within the POWHEG-BOX-V2. This implementation, derived from the POWHEG BOX version, has several improvements over the old one, among which the inclusion of all decay modes of the vector bosons, the possibility to generate different decay modes in the same run, speed optimization and phase space improvements in the handling of interference and singly resonant contributions.  相似文献   

8.
We establish a Mermin–Wagner type theorem for Gibbs states on infinite random Lorentzian triangulations (LT) arising in models of quantum gravity. Such a triangulation is naturally related to the distribution P of a critical Galton–Watson tree, conditional upon non-extinction. At the vertices of the triangles we place classical spins taking values in a torus M of dimension d, with a given group action of a torus G of dimension d′≤d. In the main body of the paper we assume that the spins interact via a two-body nearest-neighbor potential U(x,y) invariant under the action of G. We analyze quenched Gibbs measures generated by U and prove that, for P-almost all Lorentzian triangulations, every such Gibbs measure is G-invariant, which means the absence of spontaneous continuous symmetry-breaking.  相似文献   

9.
We describe the new developments in version 4 of the public computer code HiggsBounds. HiggsBounds is a tool to test models with arbitrary Higgs sectors, containing both neutral and charged Higgs bosons, against the published exclusion bounds from Higgs searches at the LEP, Tevatron and LHC experiments. From the model predictions for the Higgs masses, branching ratios, production cross sections and total decay widths—which are specified by the user in the input for the program—the code calculates the predicted signal rates for the search channels considered in the experimental data. The signal rates are compared to the expected and observed cross section limits from the Higgs searches to determine whether a point in the model parameter space is excluded at 95 % confidence level. In this paper we present a modification of the HiggsBounds main algorithm that extends the exclusion test in order to ensure that it provides useful results in the presence of one or more significant excesses in the data, corresponding to potential Higgs signals. We also describe a new method to test whether the limits from an experimental search performed under certain model assumptions can be applied to a different theoretical model. Further developments discussed here include a framework to take into account theoretical uncertainties on the Higgs mass predictions, and the possibility to obtain the $\chi ^2$ likelihood of Higgs exclusion limits from LEP. Extensions to the user subroutines from earlier versions of HiggsBounds are described. The new features are demonstrated by additional example programs.  相似文献   

10.
11.
We consider the constraints imposed by causality on the transformations of time reversal ?, charge conjugationC, and parityP in higher dimensional space-time.  相似文献   

12.
Part I of the present work outlined the rigorous application of information theory to a quantum mechanical system in a thermodynamic equilibrium state. The general formula developed there for the best-guess density operator \(\hat \rho\) was indeterminate because it involved in an essential way an unspecified prior probability distribution over the continuumD H of strong equilibrium density operators. In Part II mathematical evaluation of \(\hat \rho\) is completed after an epistemological analysis which leads first to the discretization ofD H and then to the adoption of a suitable indifference axiom to delimit the set of admissible prior distributions. Finally, quantal formulas for information-theoretic and thermodynamic entropies are contrasted, and the entire work is summarized.  相似文献   

13.
It is shown that $\hat sl(2)_{k_1 } \oplus \hat sl(2)_{k_2 } /\hat sl(2)_{k_1 + k_2 } $ coset theory is a quantum Hamiltonian reduction of the exceptional affine Lie superalgebra $\hat D(2|1;\alpha )$ . In addition, the W algebra of this theory is the commutant of the U q D(2|1;a) quantum group.  相似文献   

14.
The fundamental mappings over carrier subspace and substructures associated with \(\{ |kq\upsilon > > \} \) augmented spin algebras of Liouville space, and their mapping onto a subduced symmetry, are derived for [A]6(L 6) spin clusters within the combinatorial context of Rota-Cayley algebra over a field. Use of suitable lexical sets of combinatorialp-tuples (number partitions) over {|IM(M 1?M n )>}M, followed by the subsequent use ofL n inner tensor product (ITP) algebra, allows the substructure of Liouville space to be derived. For SU2×L 6 mapping over the simply-reducible \(\left\{ {I\tilde H_\upsilon } \right\}\) carrier subspaces, the \(D^k \left( {\tilde U} \right) \times \tilde \Gamma ^{\left[ {\tilde \lambda } \right]} \left( \upsilon \right)\) (L 6) dual irreps, also arise as a consequence of the Liouville space recoupling termsv≡{k 1?k n } being distinct labels for \(\left\{ {I\tilde H_\upsilon } \right\}\) which are themselves amenible to combinatorial analysis within the concept of Rota-Cayley algebra. Hence, theL n -induced symmetry aspects of multiquantum NMR density matrix formalisms and their dual \(\{ |kq\upsilon :[\tilde \lambda ] > > \} \) tensorial bases of spin cluster problems are derived and the nature of the cooperative, aspect between the individual symmetries comprising the duality is demonstrated, i.e. in the context of the operator bases of Liouville space. These practical arguments correlate, well with those based on an augmented boson pattern algebra derived from a Heisenburg algebra for superoperators, ?±,?0. An earlier, treatment of conventional Hilbert space SU2×L 6 dualitycould only be realised in terms of standard SU2 boson algebra. Since the recoupling Rota-‘field’v for Liouville space is an explicit aspect of the dual mapping, a direct demonstration of cooperativity exists.  相似文献   

15.
The usual definition of the prior (post) interactionV(V′) between projectile and target (resp. ejectile and residual target) being contradictory with full antisymmetrization between nucleons, an explicit antisymmetrization projectorA must be included in the definition of the transition operator, T≡V′A + V′A GV. We derive the suitably antisymmetrized mean field equations leading to a non perturbative estimate ofT. The theory is illustrated by a calculation of forwardα-α scattering, making use of self consistent symmetries.  相似文献   

16.
Given an abelian locally compact groupG and aC*-algebra with unit,U, the set of those continuous representations ofG by automorphisms ofU which fulfill a spectrum condition is closed.  相似文献   

17.
We analyze the impact of data from the full Run 1 of the LHC at 7 and 8 TeV on the CMSSM with \(\mu > 0\) and \(<0\) and the NUHM1 with \(\mu > 0\) , incorporating the constraints imposed by other experiments such as precision electroweak measurements, flavour measurements, the cosmological density of cold dark matter and the direct search for the scattering of dark matter particles in the LUX experiment. We use the following results from the LHC experiments: ATLAS searches for events with \({E\!\!/}_{T}\) accompanied by jets with the full 7 and 8 TeV data, the ATLAS and CMS measurements of the mass of the Higgs boson, the CMS searches for heavy neutral Higgs bosons and a combination of the LHCb and CMS measurements of \(\mathrm{BR}(B_s \rightarrow \mu ^+\mu ^-)\) and \(\mathrm{BR}(B_d \rightarrow \mu ^+\mu ^-)\) . Our results are based on samplings of the parameter spaces of the CMSSM for both \(\mu >0\) and \(\mu <0\) and of the NUHM1 for \(\mu > 0\) with 6.8 \(\times 10^6\) , 6.2 \(\times 10^6\) and 1.6 \(\times 10^7\) points, respectively, obtained using the MultiNest tool. The impact of the Higgs-mass constraint is assessed using FeynHiggs 2.10.0, which provides an improved prediction for the masses of the MSSM Higgs bosons in the region of heavy squark masses. It yields in general larger values of \(M_h\) than previous versions of FeynHiggs, reducing the pressure on the CMSSM and NUHM1. We find that the global \(\chi ^2\) functions for the supersymmetric models vary slowly over most of the parameter spaces allowed by the Higgs-mass and the \({E\!\!/}_{T}\) searches, with best-fit values that are comparable to the \(\chi ^2/\mathrm{dof}\) for the best Standard Model fit. We provide 95 % CL lower limits on the masses of various sparticles and assess the prospects for observing them during Run 2 of the LHC.  相似文献   

18.
The irreducible multiplier corepresentations of the extended Poincaré groupP are, for positive and zero mass, determined by generalized inducing from a generalized little group. This approach is compared with the previous one of Wigner. Form>0, and any spinj, a particular realization is noted which is manifestly covariant on all four components ofP. The choice of covering group forP is discussed, and reasons are given for preferring a group for whichS andT generate the quaternion group of order 8.  相似文献   

19.
In this work, we study the possibility of direct recovery of np helicity amplitudes, which are unknown at incident neutron energies T n > 1.1 GeV, and nn helicity amplitudes, which are unknown at any energy, from data on $\vec p + \vec d$ and $\vec n + \vec d$ scattering. For the inversion of $\vec N + \vec d$ data, we use formulas that relate N d- and NN amplitudes derived in terms of a refined Glauber model. It is found that the critical factors for solving the inverse problem under study are the accuracy and completeness of the set of input $\vec N + \vec d$ observables.  相似文献   

20.
For the investigation of higher order Feynman integrals, potentially with tensor structure, it is highly desirable to have numerical methods and automated tools for dedicated, but sufficiently ‘simple’ numerical approaches. We elaborate two algorithms for this purpose which may be applied in the Euclidean kinematical region and in d=4?2ε dimensions. One method uses Mellin–Barnes representations for the Feynman parameter representation of multi-loop Feynman integrals with arbitrary tensor rank. Our Mathematica package AMBRE has been extended for that purpose, and together with the packages MB (M. Czakon) or MBresolve (A.V. Smirnov and V.A. Smirnov) one may perform automatically a numerical evaluation of planar tensor Feynman integrals. Alternatively, one may apply sector decomposition to planar and non-planar multi-loop ε-expanded Feynman integrals with arbitrary tensor rank. We automatized the preparations of Feynman integrals for an immediate application of the package sector_decomposition (C. Bogner and S. Weinzierl) so that one has to give only a proper definition of propagators and numerators. The efficiency of the two implementations, based on Mellin–Barnes representations and sector decompositions, is compared. The computational packages are publicly available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号