首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sols of zero-valence copper are prepared via the chemical reduction of Cu(II) ions by hydrazine borane in aqueous solutions of high-molecular-mass poly(acrylic acid), which forms stable complexes with copper ions at 20°C in a wide pH range. The study of the composition of coordination centers, the ligand surrounding of metal ions, and the character of distribution of copper ions over poly(acrylic acid) coils in a wide range of solution compositions and pH values shows that the size of copper nanoparticles in the sols can be controlled by varying the ratio between ligand groups (carboxylate anions in poly(acrylic acid)) and copper ions in the reaction system during the synthesis of sols. This effect can be accomplished either by variation in the initial composition of solution or change in pH (the degree of ionization of the initial poly(acrylic acid) in the presence of copper ions).  相似文献   

2.
Copper sols are prepared via the reduction of copper ions with hydrazine borane in dilute aqueous solutions of mixtures of the PAA-Cu2+ complex and poly(ethylene glycols) of various molecular masses at PEG: PAA = 0.25 base-mol/base-mol and PAA: Cu2+ = 10 base-mol/mol in the pH range 4.0–7.0. The stability of sols against oxidation (dissolution) or aggregation (enlargement) of metal nanoparticles is much higher than that of sols prepared in the absence of PEG. With an increase in the initial pH or a decrease in the molecular mass of PEG, the formed copper nanoparticles are much larger (no less than 20 nm in diameter) than copper nanoparticles occurring in the sol prepared in a solution of the PAA double complex with Cu2+ ions and high-molecular-mass PEG at a low initial pH (3–10 nm in diameter). Copper nanoparticles in sols prepared in solutions of complexes based on the high-molecular-mass PEG do not aggregate during exposure, thereby indicating the high stability of polymer screens on their surfaces.  相似文献   

3.
The one-pot synthesis of monolayer-protected metal nanoparticles derived from sodium S-dodecylthiosulfate (Bunte salt) in aqueous solution is described. Silver nanoparticles, which were produced by the borohydride reduction of silver nitrate in H2O, were stabilized by the adsorption of S-dodecylthiosulfate followed by the removal of the SO3- moiety. Temporary stabilization of silver sols by the adsorption of borohydride and borate prevented aggregation of silver nanoparticles in H2O. The syntheses of other metal nanoparticles, including gold, copper, and palladium particles in H2O, were less successful. Gold and copper particles were completely aggregated and precipitated out immediately after the addition of NaBH4, yielding only insoluble clusters. Stable and soluble palladium nanoparticle could be prepared, but the presence of Pd-thiolate complex was also observed. These nanoparticles were characterized using 1H NMR, UV-vis spectroscopy, FT-IR spectroscopy, and transmission electron microscopy.  相似文献   

4.
The reduction of a heterobimetallic complex, Pd(OOCMe)4Ag2(HOOCMe)4, with hydrogen or sodium borohydride in an aqueous solution produces PdAg2 nanoparticles of an alloy or intermetallic type. It is shown that the catalytic activity of the particles in the reduction of methyl viologen with hydrogen is lower than that of palladium nanoparticles of the same size. Therewith, ??borohydride?? nanoparticles manifest a higher catalytic activity than do ??hydrogen?? ones. Unlike silver nanoparticles, PdAg2 nanoparticles do not catalyze the decomposition of hydrazine.  相似文献   

5.
Zero-valence copper sols are prepared at 20°C via the chemical reduction of Cu(II) ions in aqueous solutions of high-molecular-mass cationic and anionic polyelectrolytes [(poly(1,2-dimethyl-5-vinylpyridium methyl sulfate) and poly(sodium styrenesulfonate), respectively]. In both sols, metal nanoparticles are characterized by narrow size distribution, indicating the pseudomatrix mechanism of their formation; however, the diameter of spherical copper particles formed in the polycation solution (3–14 nm) is much smaller than that of particles formed in the solution of polyanion (10–30 nm). Causes of different sizes of metal nano-particles formed in solutions of polyelectrolytes with different chain charges are discussed in terms of the pseudomatrix mechanism of new phase synthesis in polymer solutions and classical electrocapillary theory.  相似文献   

6.
Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions   总被引:8,自引:0,他引:8  
Pure metallic Cu nanoparticles at a high concentration (up to 0.2 M) have been synthesized by the reduction of cupric chloride with hydrazine in the aqueous CTAB solution. The input of extra inert gases was not necessary. The use of ammonia solution for the adjustment of solution pH up to 10 and the use of hydrazine as a reducing agent in a capped reaction bottle are crucial for the synthesis of pure Cu nanoparticles. The reaction solution finally became wine-reddish and its UV/vis absorption spectrum exhibited an absorption band at 574 nm, revealing the formation of metallic Cu nanoparticles. By the analysis of electron diffraction pattern, EDS, XRD, and XPS, the resultant particles were confirmed to be pure Cu with a face-centered cubic (fcc) structure. From the TEM analysis, it was found that the mean diameter of Cu nanoparticles first decreased and then approached a constant with the increase of hydrazine concentration. In addition, the CTAB concentration had not significant influence on the size of Cu nanoparticles. Also, TG analysis indicated that there were two weight-loss steps for the CTAB-capped Cu nanoparticles. It was suggested that a bilayer structure of CTAB was formed on the surface of Cu nanoparticles to prevent from the particle agglomeration. The synthesis method reported in this work might be helpful for the large-scale production of Cu nanoparticles.  相似文献   

7.
Silver nanoparticles are obtained by reducing AgNO3 with sodium borohydride in an aqueous solution in the presence of maleic acid copolymers with ethylene, N-vinylpyrrolidone, or styrene, as well as their octadecylamide group-containing hydrophobized derivatives, as dispersants. The influence of the structural features of the dicarboxylic acid copolymers on the silver nanoparticle formation process and the conditions for producing sols containing spherical nanoparticles with sizes of 1.5–3.5 nm (according to the data of transmission electron microscopy) are determined. It is shown that, at the equimolar copolymer/silver cation ratio, the morphology of resulting silver nanoparticles weakly depends on the nature of comonomers of maleic acid and the presence of hydrophobic fragments, which play an auxiliary role in the stabilization of dispersions of nanoparticles by increasing their stability with respect to ionic strength and oxidation. Evolution of the particle sizes in the system is monitored beginning with copolymer solutions to silver sols by the methods of light scattering, transmission electron microscopy, and atomic force microscopy. According to the light scattering data, copolymers and their complexes with silver ions in solutions are partly aggregated at concentrations corresponding to the conditions of nanosilver synthesis. Silver sols are shown to contain stabilized nanoparticles, which represent core-polyelectrolyte corona-type micelles and micellar clusters with polyelectrolyte coronas.  相似文献   

8.
Characterization of zero-valent iron nanoparticles   总被引:11,自引:0,他引:11  
The iron nanoparticle technology has received considerable attention for its potential applications in groundwater treatment and site remediation. Recent studies have demonstrated the efficacy of zero-valent iron nanoparticles for the transformation of halogenated organic contaminants and heavy metals. In this work, we present a systematic characterization of the iron nanoparticles prepared with the method of ferric iron reduction by sodium borohydride. Particle size, size distribution and surface composition were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), high-resolution X-ray photoelectron spectroscopy (HR-XPS), X-ray absorption near edge structure (XANES) and acoustic/electroacoustic spectrometry. BET surface area, zeta (ζ) potential, iso-electric point (IEP), solution Eh and pH were also measured. Methods and results presented may foster better understanding, facilitate information exchange, and contribute to further research and development of iron nanoparticles for environmental and other applications.  相似文献   

9.
Electrochemical deposition from a 0.1 M sodium sulphate solution, containing Cu2+ (adjusted to pH 3 with hydrochloric acid) produced a well defined copper nanoparticle deposit on the surface of a boron doped diamond electrode. Changing conditions such as potential (-0.8, -1.0 and -1.2 V), time (5, 2 and 0.5 s) and concentration of Cu2+ (500, 250 and 100 microM) was found to give copper nanoparticles of varying size and particle density. The electrocatalytic properties of the copper surface towards nitrate reduction were explored. An in-situ copper nanoparticle production method was developed for the detection of nitrate; this involves electrodeposition, followed by linear sweep voltammetry for the reduction of nitrate and then application of a stripping potential to renew the electrode surface. The linear sweep was discovered to have homogenised the size of the nanoparticles but their number density was still dependant on the initial conditions of deposition. Some particles were still present at the surface after the stripping potential had been applied but repetitions of the procedure showed these did not have an effect on subsequent deposits. Optimisation of the method lead to applying a deposition potential of -0.8 V, at a BDD electrode for 5 s in a 0.1 M sodium sulphate solution (pH 3) containing 100 microM Cu2+ followed by a linear sweep at 1 V/s; this yielded a limit of detection of 1.5 microM nitrate. The analytical applicability of the technique was evaluated for nitrate detection in a natural mineral water sample and was found to agree well with that stated by the manufacturer.  相似文献   

10.
In this research work, the effect of solvent on the size of paltinum nanoparticles synthesized by microemulsion method was investigated. Platinum nanoparticles have been prepared by the reduction of H2PtCl6 with hydrazine in water-in-oil (w/o) microemulsions consisting of sodium bis(2-ethylhexyl) sulfo-succinate (AOT) and solvents n-hexane, cyclohexane and n-nonane. The size of the platinum nanoparticles was measured using transmission electron microscopy (TEM). It was verified that, for reduction of H2PtCl6 by hydrazine in microemulsion with different organic solvents, the solvents are arranged by their influence on nanoparticle sizes as follows: n-nonane > cyclohexane > n-hexane.  相似文献   

11.
Stable colloidal solutions of gold nanoparticles surface-derivatized with a thiol monolayer have been prepared using two-phase (water–nitrobenzene) reduction of AuCl4 by sodium borohydride in the presence of 2-mercapto-3-n-octylthiophene (MOT). This kind of surface-functionalized gold nanoparticles can be easily incorporated into the poly(3-octylthiophene) (POT) films on electrode in the process of electrochemical polymerization leading to POT–gold nanoparticle (POT–Au) composite films. Scanning probe microscopy (SPM) and X-ray photoelectric spectroscopy (XPS) have been employed to characterize the surface-derivatized particles and the resulting films. The method of incorporation of nanoparticles into polymer by surface-derivatization and in situ polymerization can also be employed to prepare many other polymer–nanoparticle compostie materials.  相似文献   

12.
Janus magnetic nanoparticles (~20 nm) were prepared by grafting either polystyrene sodium sulfonate (PSSNa) or polydimethylamino ethylmethacrylate (PDMAEMA) to the exposed surfaces of negatively charged poly(acrylic acid) (PAA)-coated magnetite nanoparticles adsorbed onto positively charged silica beads. Individually dispersed Janus nanoparticles were obtained by repulsion from the beads on reversal of the silica surface charge when the solution pH was increased. Controlled aggregation of the Janus nanoparticles was observed at low pH values, with the formation of stable clusters of approximately 2-4 times the initial size of the particles. Cluster formation was reversed, and individually dispersed nanoparticles recovered, by restoring the pH to high values. At intermediate pH values, PSSNa Janus nanoparticles showed moderate clustering, while PDMAEMA Janus nanoparticles aggregated uncontrollably due to dipolar interactions. The size of the stable clusters could be controlled by increasing the molecular weight of the grafted polymer, or by decreasing the magnetic nanoparticle surface availability for grafting, both of which yielded larger cluster sizes. The addition of small amounts of PAA-coated magnetic nanoparticles to the Janus nanoparticle suspension resulted in a further increase in the final cluster size. Monte Carlo simulation results compared favorably with experimental observations and showed the formation of small, elongated clusters similar in structure to those observed in cryo-TEM images.  相似文献   

13.
The formation of sodium citrate stabilized spherical silver nanoparticles synthesized by homogeneous nucleation in aqua solutions was monitored by the method of direct potentiometry. It was observed that the kinetic curve of Ag+ ions reduction can be described by the Finke–Watzky (FW) autocatalytic two–step mechanism in the case of a large excess of hydrazine and NaOH. To expand the FW minimalistic model, the impact of the starting concentrations of the reagents on the kinetics of Ag nanoparticles synthesis was studied. It was determined that the nucleation stage is limited by the homogeneous process of ions Ag+ reduction, and the reaction orders for the all reagents are calculated. A surface–dependent model of Ag nanoparticle growth is proposed, which takes into account the change in the hydrazine and alkali concentrations; the rate constants of the pseudoelementary reactions are also calculated.  相似文献   

14.
The stability of silver nanoparticles is controlled mainly by two major factors, namely, aggregation and oxidation. In the present study, silver nanoparticles were synthesized by using different series of reducing agents like a strong reducing agent (sodium borohydride), a mild reducing agent (tri-sodium citrate), and a weak reducing agent (glucose) with different capping agents, namely, polyvinyl pyrrolidone (PVP K 30), starch, and sodium carboxyl methyl cellulose (NaCMC). The synthesized silver nanoparticles were characterized by UV-Visible absorption spectroscopy, dynamic light scattering (DLS), atomic force microscopy (AFM), and anti-microbial activity. The particle size of silver nanoparticles varies in the following order: sodium borohydride < tri-sodium citrate < glucose. Combination of sodium borohydride–polyvinyl pyrrolidone and tri-sodium citrate-polyvinyl pyrrolidone yields stable silver nanoparticles compared to other combinations of reducing agents and capping agents. The stability results confirmed that a refrigerated condition (8°C) was more suitable for storage of silver nanoparticles. Anti-microbial activity of silver nanoparticles synthesized in a sodium borohydride–polyvinyl pyrrolidone mixture shows a larger zone of inhibition compared to other silver nanoparticles. Anti-microbial results confirmed that the anti-microbial activity is better with smaller particle size. The size and stability of silver nanoparticles in the presence of different combinations of stabilizing and capping agents are reported.  相似文献   

15.
James H. Babler 《合成通讯》2013,43(11):839-846
By use of sodium borohydride in N, N-dimethylformamide solution containing a molar excess of pyridine as a borane scavenger, direct conversion of both aliphatic and aromatic acid chlorides to the corresponding aldehydes can be achieved in >70% yield with minimal (5–10%) alcohol formation.  相似文献   

16.
This paper deals with bimetallic (Fe/Pd) nanoparticle synthesis inside the membrane pores and application for catalytic dechlorination of toxic organic compounds form aqueous streams. Membranes have been used as platforms for nanoparticle synthesis in order to reduce the agglomeration, encountered in solution phase synthesis which leads to a dramatic loss of reactivity. The membrane support, polyvinylidene fluoride (PVDF) was modified by in situ polymerization of acrylic acid in aqueous phase. Subsequent steps included ion exchange with Fe2+, reduction to Fe0 with sodium borohydride and Pd deposition. Various techniques, such as STEM, EDX, FTIR and permeability measurements, were used for membrane characterization and showed that bimetallic (Fe/Pd) nanoparticles with an average size of 20–30 nm have been incorporated inside of the PAA-coated membrane pores. The Fe/Pd-modified membranes showed a high reactivity toward a model compound, 2,2′-dichlorobiphenyl and a strong dependence of degradation on Pd (hydrogenation catalyst) content. The use of convective flow substantially reduces the degradation time: 43% conversion of dichlorobiphenyl to biphenyl can be achieved in less than 40 s residence time. Another important aspect is the ability to regenerate and reuse the Fe/Pd bimetallic systems by washing with a solution of sodium borohydride, because the iron becomes inactivated (corroded) as the dechlorination reaction proceeds.  相似文献   

17.
The immobilization of gold nanoparticles in anion exchange resin and their quantitative retrieval by means of a cationic surfactant, cetylpyridinium chloride, is studied. The resin-bound gold nanoparticles (R-Au) have been used successfully as a solid-phase catalyst for the reduction of 4-nitrophenol by sodium borohydride. At the end of the reaction, the solid matrix remains activated and separated from the product. The recycling of catalyst particles after the quantitative reduction of 4-nitrophenol and the recovery of gold nanoparticles with unaffected particle morphology from the resin-bound gold nanoparticle entity have been reported.  相似文献   

18.
Monodisperse colloidal silver nanospheres were synthesized by the reaction of silver nitrate, hydroxylammonium hydrosulphate (NH2OH)2 · H2SO4 and sodium hydroxide in the presence of gelatin as stabilizer. Colloidal nanospheres were characterized by UV-vis absorption spectroscopy, transmission electron microscopy, X-ray diffraction and dynamic light scattering. X-ray diffraction data confirmed that the silver nanospheres were crystalline with face-centered-cubic structure. Transmission electron microscopy analysis revealed the formation of homogeneously distributed silver nanoparticles of spherical morphology and size of the nanoparticles was in the range of 0.7–5.2 nm. Silver nanospheres were stable for more than two months when stored at ambient temperature. Size and size distribution were studied by varying pH, reaction temperature, silver ion concentration in feed solution, concentration of reducing agent and concentration of the stabilizing agent. Catalytic activity of silver nanospheres was tested for the reduction reaction of nitro compounds in sodium borohydride solution. Monodisperse silver nanospheres showed excellent catalytic activity towards the reduction of aromatic nitro compounds. The reduction rate of aromatic nitro compounds had been observed to follow the sequence 4-nitrophenol > 2-nitrophenol > 3-nitrophenol.  相似文献   

19.
The objective of this study is to utilize the pH sensitivity of modified mesoporous silica nanoparticles (MSN) for oral drug delivery. In the first time, a pH‐sensitive ionic liquid was synthesized through the quaternization of 3‐aminopropyltrimethoxysilane (3‐ATMS) with sodium monochloroacetate (SMCA). Then, silica nanoparticle was modified by this pH‐sensitive ionic liquid and converted to a pH‐sensitive positive‐charge silica nanoparticle (PCSN). The nanoparticle was characterized by FTIR and SEM. Naproxen as anionic drug molecules was entrapped in this pH‐sensitive positive‐charge silica nanoparticles (PCSN) and the in vitro release profiles were established separately in both (SGF, pH 1) and (SIF, pH 7.4).  相似文献   

20.
We report on the synthesis of highly monodisperse iron nanoparticles, using a chemical reduction method. Iron nanoparticles with an average diameter of 6 nm and a geometric standard deviation of 1.3 were synthesized at a pH of 9.50 from ferric chloride precursor with sodium borohydride as the reducing agent, polyacrylic acid as the dispersing agent, and palladium ions as seeds for iron nanoparticle nucleation. The resulting nanoparticles were ferromagnetic at 5 K and superparamagnetic at 350 K. The dispersing agent polyacrylic acid (PAA) was shown to prevent iron nanoparticles and possibly palladium clusters from aggregating; in the absence of PAA, only aggregated iron nanoparticles were obtained. The addition of palladium ions decreased the diameter of iron nanoparticles presumably by providing sites for heterogeneous nucleation onto palladium clusters. In the absence of palladium ions, the mean diameter of iron nanoparticles was approximately 110 nm and the standard deviation increased to 2.0. The pH of the solution also was found to have a significant effect on the particle diameter, likely by affecting PAA ionization and altering the conformation of the polymer chains. At lower pH (8.75), the PAA is less ionized and its ability to disperse palladium clusters is reduced, so the number of palladium seeds decreases. Therefore, the resulting iron nanoparticles were larger, 59 nm in diameter, versus 6 nm for nanoparticles formed at a pH of 9.50.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号