首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stochastic motion in a bistable, periodically modulated potential is discussed. Thesystem is stimulated by a white noise increments of which have a symmetric stable Lévydistribution. The noise is multiplicative: its intensity depends on the process variablelike |x|?θ . The Stratonovich and Itôinterpretations of the stochastic integral are taken into account. The mean first passagetime is calculated as a function of θ for different values of thestability index α and size of the barrier. Dependence of the outputamplitude on the noise intensity reveals a pattern typical for the stochastic resonance.Properties of the resonance as a function of α, θ andsize of the barrier are discussed. Both height and position of the peak strongly dependson θ and on a specific interpretation of the stochastic integral.  相似文献   

2.
We report some unusual structural transitions upon the addition of an amphiphilic biopolymer to unilamellar surfactant vesicles. The polymer is a hydrophobically modified chitosan and it embeds its hydrophobes in vesicle bilayers. We study vesicle-polymer mixtures using small-angle neutron scattering (SANS) and cryotransmission electron microscopy (cryo-TEM). When low amounts of the polymer are added to unilamellar vesicles of ca. 120 nm diameter, the vesicle size decreases by about 50%. Upon further addition of polymer, lamellar peaks are observed in the SANS spectra at high scattering vectors. We show that these spectra correspond to a co-existence of unilamellar and bilamellar vesicles. The transition to bilamellar vesicles as well as the changes in unilamellar vesicle size are further confirmed by cryo-TEM. A mechanism for the polymer-induced transitions in vesicle morphology is proposed.  相似文献   

3.
Liposomes are widely applied in research, diagnostics, medicine and in industry. In this study we show for the first time the effect of hydrodynamic cavitation on liposome stability and compare it to the effect of well described chemical, physical and mechanical treatments. Fluorescein loaded giant 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid vesicles were treated with hydrodynamic cavitation as promising method in inactivation of biological samples. Hydrodynamic treatment was compared to various chemical, physical and mechanical stressors such as ionic strength and osmolarity agents (glucose, Na+, Ca2+, and Fe3+), free radicals, shear stresses (pipetting, vortex mixing, rotational shear stress), high pressure, electroporation, centrifugation, surface active agents (Triton X-100, ethanol), microwave irradiation, heating, freezing-thawing, ultrasound (ultrasonic bath, sonotrode). The fluorescence intensity of individual fluorescein loaded lipid vesicles was measured with confocal laser microscopy. The distribution of lipid vesicle size, vesicle fluorescence intensity, and the number of fluorescein loaded vesicles was determined before and after treatment with different stressors. The different environmental stressors were ranked in order of their relative effect on liposome fluorescein release. Of all tested chemical, physical and mechanical treatments for stability of lipid vesicles, the most detrimental effect on vesicles stability had hydrodynamic cavitation, vortex mixing with glass beads and ultrasound. Here we showed, for the first time that hydrodynamic cavitation was among the most effective physico-chemical treatments in destroying lipid vesicles. This work provides a benchmark for lipid vesicle robustness to a variety of different physico-chemical and mechanical parameters important in lipid vesicle preparation and application.  相似文献   

4.
We present results on the stretching of single tubular vesicles in an elongation flow toward dumbbell shapes, and on their relaxation. A critical strain rate epsilonc exists; for strain rates epsilon相似文献   

5.
By integrating mesoscale models for hydrodynamics and micromechanics, we examine fluid-driven motion of vesicles on compliant surfaces. The vesicles, modeled as fluid-filled elastic shells, represent biological cells or polymeric microcapsules. Focusing on nonspecific interactions between these vesicles and synthetic substrates, we isolate mechanically and topographically patterned surfaces that transmit stop and go instructions, causing the vesicles to halt at specific locations, and with an increase in the flow velocity, to resume moving. For surfaces containing arrays of compliant posts, the substrates also affect the vesicles' gait, causing them to "crawl," "walk," or "jump." The latter behavior could promote the intermixing of reactants that are encapsulated within the microcapsules. Such control over vesicle dynamics can facilitate various biological assays and fabrication of arrays of mobile microreactors.  相似文献   

6.
Andrey Sokolov  Andrew Melatos 《Physica A》2010,389(14):2782-2792
We analyze a simple asset transfer model in which the transfer amount is a fixed fraction f of the giver’s wealth. The model is analyzed in a new way by Laplace transforming the master equation, solving it analytically and numerically for the steady-state distribution, and exploring the solutions for various values of f∈(0,1). The Laplace transform analysis is superior to agent-based simulations as it does not depend on the number of agents, enabling us to study entropy and inequality in regimes that are costly to address with simulations. We demonstrate that Boltzmann entropy is not a suitable (e.g. non-monotonic) measure of disorder in a multiplicative asset transfer system and suggest an asymmetric stochastic process that is equivalent to the asset transfer model.  相似文献   

7.
After a short outline of the vibronic features of the local Jahn-Teller effect (E g ? ε g coupling) the cooperative aspects — in particular the various order patterns of the elongated octahedra in Cu(II) solids — are reviewed. While the elastic interactions can be described by energy terms of Qε symmetry, the local Jahn-Teller effect has Qθ symmetry (? = 0). Phase transitions in dependence on the Cu(II) concentration are analysed in detail for oxidic ordered perovskites Ba(Sr)2Zn(Ni)1-x CuxW(Te)O6, which exhibit ferrodistortive order patterns connected with first order phase transitions at high x-values. At lower x-values at the short-range order scale elastic Qε-type strains prevail as in the cases of antiferrodistortive order, leading to continuous phase transitions. Here, the cluster distribution has been successfully analysed by EPR spectroscopy.  相似文献   

8.
A class of orbital motions with volume preserving flows and with vector fields periodic in the “time” parameter θ is defined. Spin motion coupled to the orbital dynamics is then defined, resulting in a class of spin-orbit motions which are important for storage rings. Phase space densities and polarization fields are introduced. It is important, in the context of storage rings, to understand the behavior of periodic polarization fields and phase space densities. Due to the 2π time periodicity of the spin-orbit equations of motion the polarization field, taken at a sequence of increasing time values θ,θ+2π,θ+4π,…, gives a sequence of polarization fields, called the stroboscopic sequence. We show, by using the Birkhoff ergodic theorem, that under very general conditions the Cesàro averages of that sequence converge almost everywhere on phase space to a polarization field which is 2π-periodic in time. This fulfills the main aim of this paper in that it demonstrates that the tracking algorithm for stroboscopic averaging, encoded in the program SPRINT and used in the study of spin motion in storage rings, is mathematically well-founded. The machinery developed is also shown to work for the stroboscopic average of phase space densities associated with the orbital dynamics. This yields a large family of periodic phase space densities and, as an example, a quite detailed analysis of the so-called betatron motion in a storage ring is presented.  相似文献   

9.
邓真渝  章林溪 《物理学报》2015,64(16):168201-168201
采用非平衡态分子动力学方法研究了二维复杂囊泡在剪切流中的动力学行为. 模拟发现了复杂囊泡经典的翻滚(tumbling)、摇摆(trembling)和坦克履(tank-treading)行为, 还观察到由坦克履行为向平动行为(translating)的转变. 囊泡的平动行为与剪切率大小、复杂囊泡的形状密切相关. 当大囊泡均匀嫁接较多数目的小囊泡后, 其平动方式消失. 该研究有益于加深对囊泡在剪切流场中复杂性行为的理解.  相似文献   

10.
A semiclassical study of intrinsic localized spin-wave modes in a one-dimensional quantum ferromagnetic XXZ chain in an oblique magnetic field is presented in this paper. We quantize the model Hamiltonian by introducing the Dyson-Maleev transformation, and adopt the coherent state representation as the basic representation of the system. By means of the method of multiple scales combined with a quasidiscreteness approximation, the equation of motion for the coherent-state amplitude can be reduced to the standard nonlinear Schrödinger equation. It is found that, at the center of the Brillouin zone, when θ < θ c a bright intrinsic localized spin-wave mode appears below the bottom of the magnon frequency band and when θ > θ c a dark intrinsic localized spin-wave resonance mode can occur above the bottom of the magnon frequency band. In other words, the switch between the bright and dark intrinsic localized spin-wave modes can be controlled via varying the angle of the magnetic field. This result has potential applications in quantum information storage. In addition, we find that, at the boundary of the Brillouin zone, the system can only produce a dark intrinsic localized spin-wave mode, whose eigenfrequency is above the upper of the magnon frequency band.  相似文献   

11.
The kinetics of unilamellar vesicle fusion induced by the addition of dimethyl sulfoxide (DMSO) and diethyl sulfoxide (DESO) with mole fractions of 0.1 and 0.2 is studied in the liquid-crystal phase using small-angle neutron scattering. Multilamellar vesicles formed due to the partial fusion of unilamellar vesicles of 1,2-dimyristoyl-sn-glycero-3-phosphadylcholine (DMPC) with the addition of DMSO (ХDMSO = 0.1, 0.2) and DESO (ХDESO = 0.2) are stable for a long time. The cooling–heating process does not affect the stability of the formed systems. The presence of DMSO and DESO with a mole fraction of 0.2 leads to disappearance of the ripple phase. The addition of DESO to the unilamellar vesicles of DMPC in D2O with a mole fraction of 0.1 does not affect the structure of unilamellar vesicles for 5–15 minutes after adding the sulfoxide in the liquid-crystal phase. Three hours later, a stable system consisting of unilamellar vesicles with a lipid bilayer thickness of 27.3(2) Å and multilamellar vesicles with a repeat distance of d = 43.6(2) Å is formed. During cooling, multilamellar vesicles are destroyed in the region of the main phase transition (T'm = 24.8(9)°C for the investigated system) and unilamellar vesicles are formed.  相似文献   

12.
We revisit a recently proposed agent-based model of active biological motion and compare its predictions with own experimental findings for the speed distribution of bacterial cells, Salmonella typhimurium. Agents move according to a stochastic dynamics and use energy stored in an internal depot for metabolism and active motion. We discuss different assumptions of how the conversion from internal to kinetic energy d(v) may depend on the actual speed, to conclude that d 2 v ξ with either ξ = 2 or 1 < ξ < 2 are promising hypotheses. To test these, we compare the model’s prediction with the speed distribution of bacteria which were obtained in media of different nutrient concentration and at different times. We find that both hypotheses are in line with the experimental observations, with ξ between 1.67 and 2.0. Regarding the influence of a higher nutrient concentration, we conclude that the take-up of energy by bacterial cells is indeed increased. But this energy is not used to increase the speed, with 40 μm/s as the most probable value of the speed distribution, but is rather spend on metabolism and growth.  相似文献   

13.
Colloidal particles coated by polyelectrolyte multilayers of alternatingly positive and negative charge are shown to interact strongly with lipid vesicles. We have studied two cases: (i) the interaction between beads and small unilamellar vesicles (vesicles diameter smaller than the particles one), where we found evidence for coating of the beads with lipid bi- or multilayers in the form of an increase in bead diameter and changes in the beads surface potential; (ii) the interaction of beads with giant vesicles (vesicles larger than the particles), where we observed by fluorescence microscopy the spreading of the vesicle on the bead manipulated with an optical tweezer. Giant fluctuations of the vesicles are suppressed due to the adhesion of the vesicle to the bead and direct observation of the coating process shows that lipid coverage is not limited to the direct vesicle-bead contact area, but is rather extended to the entire bead. To cite this article: A. Fery et al., C. R. Physique 4 (2003).  相似文献   

14.
In this paper, free, forced and Marangoni convective flows within an open enclosure partially filled with a porous medium under impacts of an inclined magnetic field are investigated. The forced convection is due to the movement of the side walls, the free convection induces from the heated part in the bottom wall and the Marangoni convection is a responsible on the thermal interaction at the free surface (top wall). The flow domain is partially heated from below and partially filled by a porous medium. The local thermal non-equilibrium model (LTNEM) is used to represent the thermal field in the porous layer (bottom layer) while the two-phase model is used to simulated the micropolar nanofluid behavior. Two cases based on the direction of the movement of the side walls are considered, namely, assisting flow (downward lid motion) and opposing flow (upward lid motion). Numerical analysis based on the finite volume method is conducted and the obtained are presented in terms of the streamlines, isotherms, angular velocity, and the cup-mixing temperature θcup, the bulk-averaged temperature θave and the average Nusselt numbers. The controlling parameters, in this situation, are the Darcy number Da, the Marangoni number Ma, the Nield number H, the vortex viscosity Δ, the Biot number Bi and the Hartmann number Ha. The results revealed that the increase in the Nield number enhances the cup-mixing temperature θcupand bulk-averaged temperature θave regardless the direction of the side walls motion. Also, the average Nusselt number is boosted as the Marangoni number is grown.  相似文献   

15.
《Nuclear Physics A》1988,483(2):406-428
The 13C+13C total fusion cross section has been determined in the range 3.26⩽Ec.m.⩽8.0 MeV using Ge(Li) detector measurements of low-lying transitions in the residual nuclei and a statistical model calculation of excited state populations. The six most abundantly produced residual nuclei have been observed and their yields are given. To constrain the parameters in fusion models for these reactions, we have also taken elastic scattering data at θc.m.=60°, 70°, 80°, and 90° for 4.5⩽Ec.m.⩽8.5 MeV, as well as angular distributions at Ec.m.=7.0 and 8.0 MeV. The IWBC model and an optical model with a “shallow” potential have been used for parametrizing the nucleus-nucleus interaction.  相似文献   

16.
The stochastic motion of a two-dimensional vesicle in linear shear flow is studied at finite temperature. In the limit of small deformations from a circle, Langevin-type equations of motion are derived, which are highly nonlinear due to the constraint of constant perimeter length. These equations are solved in the low-temperature limit and using a mean-field approach, in which the length constraint is satisfied only on average. The constraint imposes non-trivial correlations between the lowest deformation modes at low temperature. We also simulate a vesicle in a hydrodynamic solvent by using the multi-particle collision dynamics technique, both in the quasi-circular regime and for larger deformations, and compare the stationary deformation correlation functions and the time autocorrelation functions with theoretical predictions. Good agreement between theory and simulations is obtained.  相似文献   

17.
Motivated by discrete directed polymers in one space and one time dimension, we construct a continuum directed random polymer that is modeled by a continuous path interacting with a space-time white noise. The strength of the interaction is determined by an inverse temperature parameter β, and for a given β and realization of the noise the path is a Markov process. The transition probabilities are determined by solutions to the one-dimensional stochastic heat equation. We show that for all β>0 and for almost all realizations of the white noise the path measure has the same Hölder continuity and quadratic variation properties as Brownian motion, but that it is actually singular with respect to the standard Wiener measure on C([0,1]).  相似文献   

18.
We study the collective motion of autonomous mobile agents in a ringlike environment. The agents’ dynamics are inspired by known laboratory experiments on the dynamics of locust swarms. In these experiments, locusts placed at arbitrary locations and initial orientations on a ring-shaped arena are observed to eventually all march in the same direction. In this work we ask whether, and how fast, a similar phenomenon occurs in a stochastic swarm of simple locust-inspired agents. The agents are randomly initiated as marching either clockwise or counterclockwise on a discretized, wide ring-shaped region, which we subdivide into k concentric tracks of length n. Collisions cause agents to change their direction of motion. To avoid this, agents may decide to switch tracks to merge with platoons of agents marching in their direction. We prove that such agents must eventually converge to a local consensus about their direction of motion, meaning that all agents on each narrow track must eventually march in the same direction. We give asymptotic bounds for the expected time it takes for such convergence or “stabilization” to occur, which depends on the number of agents, the length of the tracks, and the number of tracks. We show that when agents also have a small probability of “erratic”, random track-jumping behavior, a global consensus on the direction of motion across all tracks will eventually be reached. Finally, we verify our theoretical findings in numerical simulations.  相似文献   

19.
We consider spatial organization of point defects in the generalized model of defects formation in elastic medium by taking into account defects production by irradiation influence and stochastic contribution for defects dynamics satisfying the fluctuation dissipation relation. We have found that depending on initial conditions and control parameters reduced to defects generation rate caused by irradiation, temperature and the stochastic source intensity different stationary structures of defects can be organized during the system evolution. Studying phase transitions between phases characterized by low- and high defect densities in stochastic system we have shown that such phenomena are described by mechanisms inherent in entropy-driven phase transitions. Stationary patterns are studied by amplitude analysis of unstable slow modes.  相似文献   

20.
A spatially distributed system with the 1/ f spectrum of fluctuation power is modeled by two nonlinear stochastic equations. The numerical methods show the formation of 1/ f and 1/ k spectra of extreme fluctuations against the background of the formation and motion of waves under the effect of white noise. The distribution of extreme fluctuations corresponds to the maximum of entropy, which testifies to their stability. Under an external periodic perturbation in the system, it is possible to observe space?time stochastic resonance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号