首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New optically active poly(ester-imide)s PEIs were prepared from newly synthesized N,N′-(bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic)-bis-L-isoleucine diacid 4 via direct polycondensation with various aromatic diols in a system of tosyl chloride (TsCl), pyridine (Py), and N,N-dimethylformamide (DMF). The reactions with bicyclo TsCl were significantly promoted by controlling alcoholysis with diols, in the presence of catalytic amounts of DMF, to give a series of optically active PEIs, with good yield and ...  相似文献   

2.
Packing density and gas permeability of two copolyimide series containing an alicyclic monomer, bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride (BCDA), and a fluorinated monomer, hexafluoroisopropylidene,2,2-bis(phthalic acid anhydride) (6FDA), were measured. Incorporation of a rigid BCDA segment in 6FDA polyimides either increases gas permeability or improves gas selectivity, depending on the base 6FDA polyimide. In the case of the highly gas permeable 6FDA polyimide, introduction of BCDA further increases gas permeability despite a loss in the amount of free volume. In the moderately gas permeable 6FDA polyimide, on the other hand, the introduction improves gas selectivity. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
A new dicarboxylic acid, N-[3,5-bis(N-trimellitoyl)phenyl]phthalimide (1a), bearing three preformed imide rings was synthesized from the condensation of N-(3,5-diaminophenyl)phthalimide and trimellitic anhydride in glacial acetic acid at 1:2 molar ratio. For study of structure-properties relationship 1,3-bis(N-trimellitoyl)benzene (1b, as a reference) was also synthesized in a similar manner. 1a and 1b were characterized by spectroscopic methods and elemental analyses.A series of wholly aromatic poly(amide-imide)s with inherent viscosities of 0.63-1.09 dl g−1 was prepared by triphenyl phosphite-activated polycondensation from the triimide-dicarboxylic acid 1a and the reference monomer 1b with various aromatic diamines. All of the polymers were fully characterized by FT-IR and 1H NMR spectroscopy. The effects of the phthalimide pendent group on the polymers properties such as solubility, crystallinity, and thermal stability were investigated by comparison of the polymers. The polymers obtained from triimide-dicarboxylic acid 1a exhibited excellent solubility in a variety of solvents such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, and dimethylsulfoxide. These poly(amide-imide)s possessed glass-transition temperatures from 334 to 403 °C and exhibited excellent thermal stabilities and had 10% weight losses from 541 to 568 °C under a nitrogen atmosphere. Poly(amide-imide)s containing phthalimide pendent groups showed higher solubility, higher Tg and Td10% values than those having no phthalimide pendent groups.  相似文献   

4.
<正>New organo-soluble poly(amide-imide)s(PAIs) 8a-8f were prepared from newly synthesized 1,2-bis[4,4'-(trimellitimido) phenoxy]ethane 6 via direct polycondensation with various aromatic diamines.The diacid 6 was synthesized by the condensation reaction of 12-bis[4-atninophenoxy]ethane 4 with trimellitic anhydride 5 in acetic acid.All polymers were obtained in quantitative high yields with inherent viscosities of 0.48-0.61 dL/g.All of these polymers were highly soluble in organic solvents such as,N-methyl-2-pyrrolidone(NMP),dimethylformamide(DMF),N,N'-dimethylacetamide (DMAc) and dimethylsulfoxide(DMSO) at room temperature and were fully characterized by means of NMR spectroscopy, FTIR spectroscopy,elemental analyses,inherent viscosity,solubility test,specific rotation,differential scanning calorimetry (DSC) and thermogravimetric analysis(TGA).  相似文献   

5.
New aromatic poly(amide-imide)s with high inherent viscosities were prepared by direct polycondensation reaction of diimide-diacid (I) and aromatic diamines using triphenyl phosphite in N-methyl-2-pyrrolidone (NMP)/pyridine solution containing dissolved CaCl2. The bis(3-trimellitimidophenyl) phenyl phosphine oxide (I) was readily obtained by the condensation reaction of bis(3-aminophenyl) phenyl phosphine oxide (BAPPO) with trimellitic anhydride. The resulting poly(amide-imide)s showed high thermostability. Their decomposition temperatures at 10% weight loss in nitrogen atmosphere were above 532 °C and the anaerobic char yield at 800 °C ranged from 56% to 74%. Almost all the poly(amide-imide)s showed high glass transition temperature above 233 °C by differential scanning calorimetry (DSC) measurements. These polymers were readily soluble in various organic solvents and by their casting into transparent, tough and flexible films can be easily achieved.  相似文献   

6.
7.
卓馨  张莉  刘超  徐基贵  王聪 《无机化学学报》2011,27(9):1727-1732
以双环[2.2.2]辛-7-烯-2,3,5,6-四羧酸(H4L)为配体,采用水热法合成了个铜配合物[Cu2L2(H2O)2](2),并得到单晶,同时在水热条件下得到了化合物H4L.2H2O(1)的晶体。分别对化合物1和2进行了元素分析、红外光谱等分析,并用X-射线单晶衍射测定了化合物的单晶结构。化合物1属于三斜晶系,P1空间群,化合物1的晶体学数据为:a=0.88554(15)nm,b=0.95566(16)nm,c=1.043 88(17)nm,α=110.863(3)°,β=91.127(3)°,γ=91.429(3)°,V=0.824 9(2)nm3,Z=2,Mr=366.32,Dc=1.475 g.cm-3,F(000)=388,μ=0.129,R1=0.067 0,wR2=0.189 3;配合物2属于正交晶系,Pnnm空间群,配合物2的晶体学数据为:a=2.766 8(6)nm,b=0.638 75(14)nm,c=0.737 32(16)nm,V=1.303 1(5)nm3,Z=4,Mr=442.31,Dc=2.254 g.cm-3,F(000)=884,μ=3.324,R1=0.059 4和wR2=0.191 7。化合物1通过氢键形成三维网状结构,配合物2中的中心离子有3种配位方式,通过不同的配位方式也形成三维结构。  相似文献   

8.
Preparation of new types of polyimides with high thermal stability and improved solubility was considered. In this way, two new amide diamines containing bulky pendant units were prepared in two steps: nucleophilic substitution reactions of 1- and 2-aminoanthraquinone with 3,5-dinitrobenzoyl chloride to form amide containing dinitro compounds, and then reduction of resulted dinitro compounds with hydrazine monohydrate in the presence of palladium/activated carbon. Two series of new poly(amide-imide)s were prepared from the reactions of these two diamines with various dianhydrides by one step polyimidation process. All poly(amide-imide)s were characterized by FTIR and 1H-NMR spectroscopies and elemental analysis. The polymers were obtained in high yields with inherent viscosities of 0.54-0.69 dl g−1. X-ray diffraction patterns (XRD) showed that all the polymers were amorphous and therefore this factor in addition to the introduction of bulky anthraquinone group led to good solubility of the polymers in most common organic solvents especially in N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAc), N,N-dimethylformamide (DMF), and dimethylsulfoxide (DMSO). Thermal analysis showed glass transition temperature between 204 and 226 °C. Decomposition temperatures were more than 293 °C, also 10% weight loss were in the range of 387-419 °C in air.  相似文献   

9.
A screening of non-conventional yeast species and several Saccharomyces cerevisiae (baker's yeast) strains overexpressing known carbonyl reductases revealed the S. cerevisiae reductase encoded by YMR226c as highly efficient for the reduction of the diketones 1 and 2 to their corresponding hydroxyketones 3-6 (Scheme 1) in excellent enantiomeric excesses. Bioreduction of 1 using the genetically engineered yeast TMB4100, overexpressing YMR226c, resulted in >99% ee for hydroxyketone (+)-4 and 84-98% ee for (-)-3, depending on the degree of conversion. Baker's yeast reduction of diketone 2 resulted in >98% ee for the hydroxyketones (+)-5 and (+)-6. However, TMB4100 led to significantly higher conversion rates (over 40 fold faster) and also a minor improvement of the enantiomeric excesses (>99%).  相似文献   

10.
New optically active diacid containing L-2-aminobutyric acid moiety was prepared by reacting bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride 1, with L-2-aminobutyric acid 2 in the acetic acid, and was polymerized with several aromatic diols 5af to obtain a new series of optically active poly(ester-imide)s (PEIs) through direct polycondensation using tosyl chloride/pyridine/N,N-dimethylformamide system as condensation agent. The data obtained by these methods indicate that, good yields and inherent viscosities are resulted. These polymers are readily soluble in polar organic solvents such as N,N-dimethyacetamide, N,N-dimethyformamide, dimethyl sulfoxide. The obtained polymers were characterized by FTIR, specific rotation measurements, elemental analysis and 1H NMR spectroscopy. The thermal stability of the resulting PEIs were evaluated with thermogravimetric analysis and differential scanning calorimetry techniques under a nitrogen atmosphere.  相似文献   

11.
<正>In this article,six new optically active copoly(amide-imide)s(10a-f) were synthesized through the direct polycondensation reaction of N-phthalimido-L-aspartic acid(4) with 1,5-diamino naphthalene(8),3,4-diamino benzophenone(9) in the presence of therphthahc acid(7),fumaric acid(6) and adipic acid(5) as a second diacid in a medium consisting of N-methyl-2-pyrrolidone,triphenyl phosphite, calcium chloride and pyridine.The resulting copolymers were fully characterized by means of FT-IR spectroscopy,elemental analyses, inherent viscosity,solubility tests and UV-vis spectroscopy.Thermal properties of resulting copolymers(10a-c) containing three different second diacid in the main chain were compared by using TGA and DTG thermograms.  相似文献   

12.
Novel aromatic poly(amide-imide)s with high inherent viscosities were prepared by direct polycondensation reaction of 2,5-bis(4-trimellitimidophenyl)-3,4-diphenylthiophene ( IV ) and aromatic diamines using triphenyl phosphite in the N-methyl–2-pyrrolidone (NMP)/pyridine solution containing dissolved CaCl2. The diimide-diacid IV was readily obtained by the condensation reaction of 2,5-bis(4-aminophenyl)-3,4-diphenylthiophene ( III 1) with trimellitic anhydride. The obtained poly(amide-imide)s showed high thermostability. Their decomposition temperatures at 10% weight loss in nitrogen atmospheres were above 550°C and the anaerobic char yield at 800°C ranged from 48 to 68%. Almost all the poly(amide-imide)s showed high glass transition temperatures above 300°C by differential scanning calorimetry (DSC) measurements. These polymers were readily soluble in various organic solvents and could be cast into transparent, tough, and flexible films. Their casting films showed obvious yield points in the stress-strain curves and had strength at break up to 74.2 MPa, elongation to break up to 70.1%, and initial modulus up to 4.56 GPa. The factors affecting the reaction of diimide-diacid IV and 4,4′-oxydianiline in view of monomer concentration, reaction temperature, and amount of CaCl2 were also investigated. © 1992 John Wiley & Sons, Inc.  相似文献   

13.
Two sulfonyl group-containing bis(ether anhydride)s, 4,4′-[sulfonylbis(1,4-phenylene)dioxy]diphthalic anhydride ( IV ) and 4,4′-[sulfonylbis(2,6-dimethyl-1,4-phenylene)dioxy]diphthalic anhydride (Me- IV ), were prepared in three steps starting from the nucleophilic nitrodisplacement reaction of the bisphenolate ions of 4,4′-sulfonyldiphenol and 4,4′-sulfonylbis(2,6-dimethylphenol) with 4-nitrophthalonitrile in N,N-dimethylformamide (DMF). High-molar-mass aromatic poly(ether sulfone imide)s were synthesized via a conventional two-stage procedure from the bis(ether anhydride)s and various aromatic diamines. The inherent viscosities of the intermediate poly(ether sulfone amic acid)s were in the ranges of 0.30–0.47 dL/g for those from IV and 0.64–1.34 dL/g for those from Me- IV. After thermal imidization, the resulting two series of poly(ether sulfone imide)s had inherent viscosities of 0.25–0.49 and 0.39–1.19 dL/g, respectively. Most of the polyimides showed distinct glass transitions on their differential scanning calorimetry (DSC) curves, and their glass transition temperatures (Tg) were recorded between 223–253 and 252–288°C, respectively. The results of thermogravimetry (TG) revealed that all the poly(ether sulfone imide)s showed no significant weight loss before 400°C. The methyl-substituted polymers showed higher Tg's but lower initial decomposition temperatures and less solubility compared to the corresponding unsubstituted polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1649–1656, 1998  相似文献   

14.
Novel poly(spiroorthocarbonate)s [poly(SOC)]s having a Cardo or bent structure were synthesized by polycondensation of several bis‐catechols having fluorene (BCFL), spirobisindane (BCSPI), or spirobischromane (BCSPC) in the structure with 2,2,6,6‐tetrachlorobenzo[1,2‐d:4,5‐d’]bis[1,3]dioxole (4ClBD). Synthesis of poly(SOC)s was confirmed by NMR and IR spectrometry. The poly(SOC)s obtained from BCFL or BCSPC were soluble in common organic solvents. The glass transition temperature of the poly(SOC)s was not detected by differential scanning calorimetry (DSC) in the range of 50–300 °C. The 10 wt % decomposition temperature of the poly(SOC)s was found to be above 400 °C. These results indicated the high thermal stability of the poly(SOC)s. Soluble poly(SOC)s could be possessed to form a film on a glass plate by the spin coat method. The obtained polymer films were 0.2 μm in thickness with 95% light transmission in the optical wavelength range. These results suggested that the Cardo or bent structure may block the packing of the main‐chain of the structure, which improves the solubility of the polymers, increases transparency, and enhances the thermal stability of SOCs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1409‐1416  相似文献   

15.
4,4-(Hexafluoroisopropylidene)-N,N-bis(phthaloyl-l-leucine-p-amidobenzoic acid) (2) was prepared from the reaction of 4,4-(hexafluoroisopropylidene)-N,N-bis(phthaloyl-l-leucine) diacid chloride with p-aminobenzoic acid. The direct polycondensation reaction of monomer (2) with p-phenylenediamine (2a), 4,4-diaminodiphenylsulfone (2b), 2,4-diaminotoluene (2c), 2,6-diaminopyridine (2d), m-phenylene diamine (2e), benzidine (2f), 4,4-diaminodiphenylether (2g) and 4,4-diaminodiphenyl methane (2h) was carried out in a medium consisting of triphenyl phosphite, N-methyl-2-pyrolidone, pyridine, and calcium chloride. The homogeneous mixture was heated at 220 °C for 1 min under nitrogen. The resulting poly(amide-imide)s (PAIs) having inherent viscosities 0.27-0.78 dl/g were obtained in high yield and are optically active and thermally stable. All of the above polymers were fully characterized by IR spectroscopy, elemental analyses and specific rotation. Some structural characterization and physical properties of this new optically active PAIs are reported.  相似文献   

16.
Synthesis and photochemistry of several title compounds 1-3 containing multiple chromophoric systems are described. The Diels-Alder reactions of 2,6,6-trimethylcyclohexa-2,4-dienone (5) with acetylenes 6a-d provided the adducts 7a-d, which upon hydrolysis furnished the desired bicyclo[2.2.2]octenediones 1a-d. Oximes 2a-d were prepared from diones 1a-d by treatment with hydroxylamine hydrochloride in pyridine. 5-Methylenebicyclo[2.2.2]oct-7-en-2-ones 3a-d were obtained via chemoselective Wittig reaction of the corresponding diones 1a-d. Bicyclo[2.2.2]octenediones 1a-c underwent chemoselective oxa-di-pi-methane rearrangement under sensitized conditions and suffered formal ketene extrusion upon direct irradiation. Direct irradiation of 1d afforded 11d via formal ketene extrusion but under sensitization it remained unchanged. Oximes 2a-d suffered ketene extrusion upon direct irradiation and E/Z isomerization under sensitized conditions. On the other hand, 5-methylenebicyclo[2.2.2]oct-7-en-2-ones 3a-d generally underwent 1,3-acyl shift. The plausible courses of all these photochemical processes are discussed.  相似文献   

17.
A series of novel soluble poly(amide-imide)s were prepared from the diimide-dicarboxylic acid, 2,2-bis[N-(4-carboxyphenyl)-phthalimidyl]hexafluoropropane, with various diamines by the direct polycondensation in N-methyl-2-pyrrolidinone containing CaCl2 using triphenyl phosphite and pyridine as condensing agents. All the polymers were obtained in quantitative yields with inherent viscosities of 0.78–1.63 dL g−1. The polymers were amorphous and readily soluble in aprotic polar solvents such as N-methyl-2-pyrrolidinone, N,N-dimethylacetamide, N,N-dimethylformamide, and dimethyl sulfoxide as well as in less polar solvents such as pyridine and γ-butyrolactone, and also in tetrahydrofuran. The polymer films had tensile strength of 84–129 MPa, an elongation at break range of 6–22%, and a tensile modulus range of 2.0–2.7 GPa. The glass transition temperatures of the polymers were determined by DSC method and they were in the range of 240–282°C. These polymers were fairly stable up to a temperature around or above 400°C, and lose 10% weight in the range of 450–514°C and 440–506°C in nitrogen and air, respectively. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2629–2635, 1999  相似文献   

18.
Poly(benzobisoxazoles) (PBOs), poly(benzobisthiazoles) (PBTs) and copolymers thereof containing the 2,5-dihydroxybicyclo[2.2.2]octane moiety have been prepared and studied. The homopolymers were synthesized by the polycondensation of 2,5-dihydroxybicyclo[2.2.2]octane-1,4-dicarboxylic acid with 4,6-diamino-1,3-benzenediol dihydrochloride or 2,5-diamino-1,4-benzenedithiol dihydrochloride in poly(phosphoric acid). Random and block copolymers (PBO–PBT) were also prepared. The polymers were characterized by solubility, X-ray diffraction, spectroscopy (infrared and solid-state 13C nuclear magnetic resonance), and thermal analysis such as differential scanning calorimetry and thermogravimetric analysis. Thermogravimetric analysis showed thermal stability of the polymers above 375°C in air and under argon atmosphere. The polymers exhibited high resistance to organic and inorganic solvents. The polymers were converted to the more stable aromatic polymers via dehydration and retro Diels–Alder reactions of the 2,5-dihydroxybicyclo[2.2.2]octyl moiety by pyrolysis. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 277–281, 1998  相似文献   

19.
New bis(phenoxy)naphthalene-containing poly(amide-imide)s having an inherent viscosity in the range of 0.62–1.09 dL/g were prepared by the direct polycondensation of 1,5-bis(4-trimellitimidophenoxy) naphthalene ( I ) and various aromatic diamines using triphenyl phosphite and pyridine as condensing agents in N-methyl-2-pyrrolidone (NMP) in the presence of calcium chloride. The diimide-diacid (I) was prepared by the condensation of 1,5-bis(4-aminophenoxy) naphthalene and trimellitic anhydride. Most of the polymers were soluble in aprotic solvents such as NMP and N,N-dimethylacetamide (DMAc), and afforded transparent, flexible and tough films upon casting from DMAc solutions. Measurements of wide-angle X-ray diffraction revealed that those polymers containing p-phenylene or oxyphenylene groups were characterized as crystalline polymers. Tensile strength and initial moduli of the polymer films ranged from 61–86 MPa and 1.83–2.21 GPa, respectively. Glass transition temperatures of the polymers were in the range of 231–340°C. The melting points of the crystalline polymers ranged from 375–430°C. The 10% weight loss temperatures were above 512°C in nitrogen and 481°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
The new polymer-forming diimide-diacid, 2,3-bis(4-trimellitimidophenoxy) naphthalene (I), was readily obtained by the condensation reaction of 2,3-bis (4-aminophenoxy) naphthalene with trimellitic anhydride. A series of novel aromatic poly (amide-imide)s were prepared by the direct polycondensation of diimide-diacid I with various aromatic diamines using triphenyl phosphite in N-methyl-2-pyrrolidone (NMP)/pyridine solution containing dissolved calcium chloride. The resultant polymers have inherent viscosities in the range of 0.65–1.02 dL/g at 30°C in N, N-dimethylacetamide. These polymers were readily soluble in various organic solvents and could be cast into transparent, tough, and flexible films. Their casting films showed tensile strength at break up to 86 MPa, elongation to break of 5–9%, and initial moduli up to 2.35 GPa. The wide-angle X-ray diffraction revealed that those polymers containing p-phenylene or p-oxyphenylene group are partially crystalline, and the other polymers are evidenced as amorphous patterns. These polymers show a glass transition in the range of 213–290°C in their differential scanning calorimetry (DSC) traces. The thermal stability of the polymers was evaluated by thermogravimetry analysis, which showed the 10% weight-loss temperatures in the range of 508–565°C in nitrogen and 480–529°C in air atmosphere. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号