首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
黄卫  颜德岳 《高分子科学》2011,29(4):506-512
Two highly soluble aromatic polyimides were synthesized successfully from a diamine with two tert-butyl groups (MBTBA)and dianhydrides with a thioether or sulfone moiety(DTDA and DSDA).Both of them showed excellent solubility in common solvents such as chloroform,tetrahydrofuran and dioxane at the room temperature.The number-average molecular weight was 6.0×104 and 8.3×104 according to gel permeation chromatography relative to a polystyrene standard,and the polydispersity index was 1.80 and 1.82 respectively.The glass-transition temperatures of them were 286℃and 314℃(or 315℃and 358℃)respectively,as measured by differential scanning calorimetry(or dynamic mechanical analysis).The 5%weight loss temperature of both was near 490℃in N2 by thermogravimetric analysis.These results indicated that the tert-butyl pendent groups reduced the interactions among polymer chains and the thioether or sulfone moiety was flexible which may improve their solubility in conventional organic solvents without the loss of thermal stability. Transparent and flexible films of the two polyimides were obtained via solution casting.The MBTBA-DTDA membrane had higher storage moduli than those of the MBTBA-DSDA membrane.  相似文献   

4.
Asymmetric aromatic diamines of the benzophenone series (3,4′-diamino-4-methylbenzophenone and 3,4′-diamino-4-methoxybenzophenone) were synthesized via the Friedel-Crafts reaction of 4-nitrobenzoyl chloride with an equimolar amount of toluene or anisole; the subsequent nitration of the products (4′-nitro-4-methylbenzophenone and 4′-nitro-4-methoxybenzophenone), yielding 3,4′-dinitro-4-methylbenzophenone and 3,4′-dinitro-4-methoxybenzophenone; and the reduction of the latter compounds. The high-temperature polycyclocondensation of the above diamines with aromatic tetracarboxylic dianhydrides in phenol solvents gave methyl-and methoxy-substituted aromatic polyimides soluble in phenol and amide solvents.  相似文献   

5.
A new phenoxy-substituted aromatic diamine, 3,4′-diamino-4-phenoxybenzophenone, was synthesized by a four-step process using p-nitrobenzoyl chloride and chlorobenzene as initial compounds. By interaction of the obtained diamine with aromatic tetracarboxylic acid dianhydrides under high-temperature polycyclocondensation conditions in phenolic solvents, new high-molecular-mass soluble polyimides were prepared.  相似文献   

6.
Several highly soluble polyimides were synthesized from various aromatic tetracarboxylic dianhydrides and an aromatic diamine containing tert‐butyl pendent groups [4,4′‐methylenebis(2‐tert‐butylaniline)]. All the polyimides showed excellent solubility in common solvents such as chloroform, tetrahydrofuran, and dioxane at room temperature. The number‐average molecular weight ranged from 3.6 × 104 to 1.3 × 105 according to gel permeation chromatography relative to a polystyrene standard, and the polydispersity index was between 1.9 and 2.5. The glass‐transition temperatures of the resulting polyimides ranged from 213 to 325 °C, as measured by differential scanning calorimetry, and little weight loss was observed up to 450 °C in N2 by thermogravimetric analysis. These experimental data indicated that the tert‐butyl pendent groups reduced the interactions among polymer chains to improve their solubility in organic solvents without the loss of thermal stability. Transparent and flexible films of these polyimides were obtained via casting from solution. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 229–234, 2002  相似文献   

7.
Here, we report the synthesis and characterization of new soluble polyimides that are functionalized using carbazole moieties in their side chain. As a monomer for synthesizing the polyimides, 4″‐carbazole‐9‐yl‐[1,1′;2′,1″] terphenyl‐4‐4′‐diamine and 2‐(3‐carbazol‐9‐yl‐propyl)‐biphenyl‐4,4′‐diamine were synthesized and then characterized using 1H NMR, 13C NMR, FTIR, UV–visible and photoluminescence spectroscopy, differential scanning calorimetry (DSC), and elemental analysis. The polyimides synthesized via chemical imidization processes were characterized with X‐ray photoelectron spectroscopy, gel permeation chromatography, wide angle X‐ray diffraction, thermogravimetric analysis, DSC, tensile strength measurement, and dielectric property measurement. Results showed that the synthesized polyimides were soluble in a variety of organic solvents, optically transparent in a visible range, thermally stable, mechanically strong, and considerably low dielectric. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8117–8130, 2008  相似文献   

8.
Bis(p-aminophenoxy)diphenylsilane (BPS), bis(m-aminophenoxy)diphenylsilane (BMS) and bis(5-amino-1-naphthoxy)diphenylsilane (BAS) as three silane-diamines were prepared by the reactions of 4-aminophenol, 3-aminophenol, and 5-amino-1-naphthol respectively, with dichlorodiphenylsilane in the presence of triethylamine. The related silane-containing polyimides were prepared by two-step polycondensation reactions of these diamines with three different aromatic dianhydrides. All the polymers were characterized and their physical and thermal properties were studied. The polymers showed high thermal stability while their solubility was greatly increased in polar aprotic solvents. Wide angle X-ray diffraction showed that all the polyimides were almost amorphous. Also their dielectric constants were decreased due to the incorporation of softening and low-polarizing siloxane units into the polymer backbone.  相似文献   

9.
A series of polyimides were synthesized from 2,2‐Bis(3,4‐dicarboxyphenyl)hexafluoropropane, 2,2‐bis(3‐amino‐4‐hydroxyphenyl)‐hexafluoropropane, and 4,4′‐oxydianiline by chemical imidization. The effects of the diamine ratios on the properties of the films were evaluated through the study of their thermal, electrical, and morphological properties. All the polymers exhibited better solubility in most of the organic solvents and hence were easily processable. Polyimides with more 2,2‐bis(3‐amino‐4‐hydroxyphenyl)‐hexafluoropropane exhibited better solubility and a low refractive index, which is highly desired for microelectronic applications. The dielectric constant and birefringence were strongly dependent on the fluorine content. With an increase in the fluorine substitution, both the dielectric constant and birefringence decreased. All the polymers exhibited high thermal stability (>400 °C). The absence of crystalline melting in differential scanning calorimetry and broad wide‐angle X‐ray diffraction patterns revealed the amorphous nature of the polymers, which was due to the presence of bulky CF3 groups and hinged ether linkages of the diamine component. The residual stress values decreased with an increase in the 4,4′‐oxydianiline content, and the results were in agreement with the dielectric constant. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4303–4312, 2004  相似文献   

10.
A novel ABB′ monomer, an isomeric mixture of 4‐[4‐(2,4‐diaminophenoxy)phenoxy]phthalic acid 2‐methyl ester, was successfully prepared. The direct polycondensation of the ABB′ monomer was carried out to form polyamic acid monomethyl ester as a precursor with an inherent viscosity of 0.30 dL/g and a number‐average molecular weight of 12,000. The degree of branching of the precursor, determined by 1H NMR, was 0.07. The low degree of branching was caused by the differences in the reactivities of the amino groups. The shape factor was calculated to be 0.72. End‐modified reactions with acetyl chloride, benzoyl chloride, and phthalic anhydride were carried out. After the chemical imidization of the end‐modified precursors, end‐modified polyimides were successfully prepared. The end‐modified polyimides were soluble in dimethyl sulfoxide, dimethylformamide (DMF), and N‐methyl‐2‐pyrrolidinone. On the basis of thermogravimetry and differential scanning calorimetry measurements of the polyimides, the 5 wt % thermal loss temperatures were determined to be 400–520 °C, and the glass‐transition temperatures were determined to be 200–258 °C. According to the X‐ray diffraction measurements, the end‐modified polyimides were amorphous. A strong but brittle film was prepared from an acetamide end‐modified polyimide solution, via casting from a DMF solution, with a tensile strength of 46 MPa, an elongation at break of 4%, and a modulus of 1.3 GPa. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3200–3211, 2004  相似文献   

11.
A novel functional diamine N12, containing triphenylamine moiety, biphenyl, tert-butyl substituents and long alkyl chain, N,N-bis(4-aminophenyl)-p-(3,5-di-tert-butyl-4-dodecyloxy phenyl) aniline (N12), was synthesised and characterised. A series of polyimides (PIs) were prepared based on 2,2?-bis(trifluoromethyl)benzidine, 4,4?-oxydiphthalicanhydride and different contents of N12 via a conventional two-step procedure that included a ring-opening polyaddition to gain polyamic acids, followed by chemical cyclodehydration. The chemical structures of the intermediates, diamines and PIs were characterised by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. All of the PIs were amorphous and exhibited good solubility in both polar aprotic solvents and some low boiling point solvents. PIs containing different content of N12 could induce highly uniform vertical alignment of liquid crystals (LCs). More importantly, PIs derived from N12 showed a good rubbing resistance. Besides, all PI films showed high transmittance in the wavelength range 400–700 nm and good thermal stabilities. Such PIs could be suitable candidates for alignment layers used in the manufacture of high-performance vertical alignment mode LC displays.  相似文献   

12.
Polyimides (PI's) with low-dielectric constant and excellent organic solubility have broad application prospects in the electronic field. Herein, this study designed a series of novel, low dielectric, organic soluble PI films by creatively introducing fluorene and pyridine ring into diamine monomers. Because of the noncoplanar structure of fluorenyl and the polarization of pyridine ring, PI films achieved a low-dielectric constant (2.22–3.09 at 10 MHz) and excellent organic solubility. Even in some organic solvents with low-boiling points, these PI films still exhibited outstanding solubility. In addition, all the films possessed high-tensile strength (≈120 MPa) and excellent optical transparency (>70%, 450 nm). It was worth noting that the glass transition temperature of films was all above 280°C and 5% weight loss temperature (T5%) was at 486–553°C. In general, the novel high-performance low-dielectric PI films are expected to be used in the field of microelectronics.  相似文献   

13.
Aromatic polyimides with side chain nonlinear optical chromophores have been investigated through a facile two-step synthetic route. First, various poly(hydroxy imide)s have been synthesized by direct thermal imidization of diaminophenol dihydrochloride salt and aromatic dianhydride monomers. The resulting polyimides bearing phenolic hydroxy groups were found to react easily with the terminal hydroxy group on the chromophores via the Mitsunobu condensation to give corresponding polyimides with high optical nonlinearities and good solubility in common organic solvents. Detailed physical properties showed that these polyimides have a molecular weight (Mw) of 31,000 and high glass transition temperature above 220°C, ensuring a long-term alignment stability at elevated temperature. The electrooptic coefficients, r33, of the electrically poled polymer films were in the range 1.8–7.6 pm/V at 1.3 μm. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 301–307, 1998  相似文献   

14.
Polyimides having pendant carboxyl groups were prepared by a direct one‐pot polycondensation of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) with 3,5‐diaminobenzoic acid (DABz) and bis[4‐(3‐aminophenoxy)phenyl]sulfone (m‐BAPS) in the presence of a γ‐valerolactone/pyridine catalyst system using N‐methyl‐2‐pyrrolidone (NMP)/toluene mixture as a solvent at 180 °C. The obtained polyimides were soluble in dipolar aprotic solvents such as dimethylformamide, dimethyl sulfoxide, and NMP as well as in tetrahydrofuran and aqueous basic solution. The solubility of the polyimides was dependent on the diamine composition. Photosensitve polyimide (PSPI) systems composed of the polyimides and diazonaphthoquinone compound as a photosensitive material gave positive‐tone behavior by UV irradiation, followed by development with aqueous tetramethylammonium hydroxide (TMAH) solution. The scanning electron microscopic photograph of the resulting image showed 10‐μm line/space resolution with about 15 μm of film thickness. The PSPIs baked at 350 °C for a short time had excellent thermal resistance comparable to the original polyimides. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 934–946, 2001  相似文献   

15.
A series of new soluble aromatic polyimides with inherent viscosities of 0.65–1.12 dL/g were synthesized from 1,3-bis(4-aminophenyl)-4,5-diphenylimidazolin-2-one and various aromatic tetracarboxylic dianhydrides by the conventional two-step procedure that included ring-opening polyaddition and subsequent thermal cyclodehydration. These polyimides could also be prepared by the one-pot procedure in homogeneous m-cresol solution. Most of the tetraphenyl-pendant polyimides were soluble in organic solvents such as N,N-dimethylacetamide, 1,3-dimethyl-2-imidazolidone, and m-cresol. Some polyimides gave transparent, flexible, and tough films with good tensile properties. The glass transition temperatures and 10% weight loss temperatures under nitrogen of the polyimides were in the range of 287–326 and 520–580°C, respectively. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1767–1772, 1998  相似文献   

16.
刘成杰  洪珊 《化学研究与应用》2007,19(10):1080-1083,1088
本文合成了含长烷基侧链的二胺单体3,5-二氨基苯甲酸(4-烷氧基)苯酯,然后使它与2,2-双[4.(3,4-二羧酸基苯氧基)苯基]丙烷二酐在N甲基-2-吡咯烷酮溶液中聚合,再通过化学酰亚胺化得到一系列含有长烷基侧链的聚酰亚胺。聚酰亚胺的结构经红外光谱和核磁共振氢谱确认,并对它的溶解性能、特征粘数、光学性能和热性能等进行了表征。结果表明,所合成的聚酰亚胺具有好的溶解性能、较高的分子量、优异的透光率和较好的热稳定性。  相似文献   

17.
A new diamine, 1,4-phenylene bis((E)-1-(4-chloro-3-aminobenzylidene) thiourea) (PCABT), containing phenylthiourea and azomethine groups was prepared from the reduction of dinitro compound, 1,4-phenylene bis((E)-1-(4-chloro-3-nitrobenzylidene)thiourea), PCNBT. The structures of resulting monomers were characterized by elemental analysis, FTIR, 1H and 13C NMR techniques. Afterwards, this diamine was reacted with various aromatic dianhydrides (ODPA, BTDA and 6FDA) in glacial acetic acid to afford poly(phenylthiourea azomethine imide)s (PPTAIs) with ηinh of 1.59-1.66 dL/g, depending on the dianhydride used. The ensuing PPTAIs exhibited ample solubility in organic solvents (DMAc, DMF, DMSO and NMP) and were obtained in quantitative yields. Also, all polyimides were amorphous according to wide-angle X-ray determination. GPC measurements of polymers revealed Mw around 69,000-72,000. Moreover, thermogravimetric analyses indicated that PPTAIs were fairly stable up to 550 °C, and 10% weight loss temperatures were recorded in the range of 563-578 °C (N2 atmosphere). Ultimately, these polyimides own high glass transition temperatures about 281-285 °C.  相似文献   

18.
A series of novel and soluble polyimides containing fluorine were synthesized by the polycondensation of fluorine-containing aromatic dianhydride TFDA with substitutional diaminetriphenylmethanes TDPT, FTDPT and 3FTDPT. The composition, structure and properties of the resulting polyimides were studied by means of FT-IR, DSC, TGA and elemental analysis methods, as well as general characterization methods that test solubility or viscosity. The results show that all the novel polyimides were obtained in quantitative yields with inherent viscosities of 0.70-0.76 dL/g, and showed excellent solubility in common organic solvents, such as NMP, DMAc, DMF, DMSO, THF, m-cresol, chloroform and 4-butyrolactone. Meanwhile, their Tg values from DSC are in the range of 265-293 °C, the temperature of 5 and 10% weight loss from TGA are in the range of 460-465 and 513-524 °C in N2, respectively.  相似文献   

19.
A series of polyimides (PIs) were copolymerized from 4-dodecyloxy-biphenyl-3′,5′-diaminobenzoate (DBPDA), 3,3′-dimethyl-4,4′-methylene-dianiline (DMMDA) and 4,4′-oxydi(phthalic anhydride) (ODPA) via one-step method. The PIs possessed excellent solubility in polar aprotic solvents and easily formed thin flexible films by solution casting. The glass-transition temperatures (Tgs) of the PIs were in the range of 219-242 °C and thermal decomposition temperatures in nitrogen occurred above 350 °C. The resultant PI films exhibited high transparency at wavelengths greater than 400 nm and induced excellent uniform vertical alignment of liquid crystal (LC). Even after the rubbing process, the pretilt angles of LC were still above 89°. The PI seems to be a prospective material for alignment layers in flexible displays.  相似文献   

20.
Soluble aromatic and carboxyl- and hydroxyl-containing polyimides, mixed polyimides, and polyquinazolones of various chemical structures, as well as a series of new dicyanoazobenzene chromophores, are synthesized. From 20 to 80 mol % of chromophore groups are incorporated into side chains of the polymers. The thermal, photosensitive, and nonlinear optical properties (second-harmonic generation) of the chromophore-containing polymers are investigated. The polymers with covalently attached groups of the dye DR-13 or azo-derivatives of 4-phthalonitrile demonstrate the highest nonlinearity. The T g values of the polyimides vary from 165 to 215°C; their temperatures corresponding to 5% weight loss lie in the range 290–350°C; and the measured coefficients of second-harmonic generation, d 33, for a number of polarized films based on chromophore-containing polymers attain several tens of picometers per volt. The incorporation of chromophore groups into the side chains of the polymers causes an increase in the photosensitivity of polyimides by an order of magnitude relative to that of the parent polymers (S 0.1 = (3?4) × 105 cm2/J in the range of dye absorption).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号