首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) are used to monitor changes in the ionization of monolayers of 11-mercaptoundecanoic acid. When using an anionic redox probe, Fe(CN)6(-4), the charge-transfer resistance of the 11-mercaptoundecanoic acid monolayer-modified interface increases in a sigmoidal fashion as the solution is made basic. The opposite effect is observed when using a cationic redox probe. The inflection points of these two titration curves, however, differ when using the different redox probes. This result is taken as being characteristic of the influence that applied potential has on the ionization of the monolayer. The role of substrate potential on the ionization of the monolayer is further investigated by SECM. The SECM measurement monitors the concentration of Ru(NH3)6(+3) as the potential of the substrate is varied about the potential of zero charge. For monolayers of 11-mercaptoundecanoic acid in solutions buffered near the pKa of the terminal carboxylic acid, potential excursions positive of the PZC cause an increase in the concentration of Ru(NH3)6(+3) local to the interface, and potential excursions negative of the PZC cause a decrease in the local concentration of Ru(NH3)6(+3). Similar experiments conducted with an interface modified with 11-undecanethiol had no impact on the local concentration of Ru(NH3)6(+3). These results are interpreted in terms of the influence that applied potential has on the pH of the solution local to the interface and the impact that this has on the ionization of the monolayer.  相似文献   

2.
银纳米修饰电极的制备及电化学行为   总被引:7,自引:0,他引:7       下载免费PDF全文
金属纳米粒子由于其小的体积和大的比表面积而具有独特的电子、光学和异相催化特性,是目前表面纳米工程及功能化纳米结构制备的一种理想研究对象[1]。银纳米粒子可广泛应用于催化剂材料、电池的电极材料、低温导热材料和导电材料等,成为近年来人们研究的热点[2,3]。在电化学方面,银纳米粒子具有比其他纳米粒子更为优异的导电性能和电催化性能。因此,研究银纳米粒子修饰电极有重要的应用价值和前景[4]。1实验部分1.1仪器CHI660电化学工作站(USA);TU-1901型双光束紫外可见分光光度计(北京普析通用仪器公司);KQ-100型超声清洗器(昆山市超声…  相似文献   

3.
Electrochemical quartz crystal microbalance (EQCM) was employed to investigate the dynamics of rectified quantized charging of gold nanoparticle multilayers by in situ monitoring of the interfacial mass changes in aqueous solutions with varied electrolytes. EQCM measurements showed that interfacial mass changes only occurred at potentials more positive than the potential of zero charge (PZC), where nanoparticle quantized charging was well-defined, whereas in the negative potential regime where only featureless voltammetric responses were observed, the QCM frequency remained virtually invariant. This was ascribed to the fact that nanoparticle quantized charging was induced by the formation of ion-pairs between hydrophobic electrolyte anions (PF6-, ClO4-, BF4-, and NO3-) and positively charged gold nanoparticles. Based on the total frequency changes and the number of electrolyte anions adsorbed onto the particle layers, the number of water molecules that were involved in the ion-pairing processes was then quantitatively estimated at varied particle charge states, which was found to increase with increasing hydrophobicity of the anions. Additionally, the electron-transfer dynamics of the gold particle multilayers were also evaluated by electrochemical impedance measurements. It was found that the particle electron-transfer rate was about an order of magnitude slower than that of the ion diffusion and binding.  相似文献   

4.
Both quartz crystal micro-balance (QCM) impedance and electrochemical impedance spectroscopy (EIS) methods are widely used in interface studies. This paper presents details about a new strategy for simultaneous, mutual-interference-free and accurate measurements of QCM impedance and EI, through connecting a suitable capacitance in series with the piezoelectric quartz crystal (PQC) between QCM impedance and EIS measurement instruments. Combined and individual measurements of QCM impedance and EIS during silver deposition gave results comparable with each other, demonstrating the reliability of the proposed method. Bovine serum albumin (BSA) adsorption on gold and platinum electrodes in Britton-Robinson (B-R) buffers was investigated, and the Fe(CN)6(3-)/Fe(CN)6(4-) couple was used as an electrochemical probe to characterize BSA adsorption. While the reversibility of Fe(CN)6(3-)/Fe(CN)6(4-) couple on bare Au and Pt electrodes changed very slightly with decreasing solution pH from pH approximately 7 to pH approximately 2, the standard rate constant (ks) of this couple increased abruptly with solution pH below pH approximately 4.5 at a BSA-modified Au electrode, but decreased with solution pH at a BSA-modified Pt electrode. By analyzing the QCM impedance data with a modified BVD equivalent circuit and the EI data with a modified Randle's equivalent circuit, inflexion changes at pH approximately 4.5 were all found at pH-dependent responses of the resonant frequency, the double-layer capacitance, the capacitance of the adsorbed BSA layer, the peak-absorbance values of BSA solutions at 277.5 and 224.5 nm, and so on. It was also found that a BSA adsorption layer can effectively inhibit gold corrosion during ferrocyanide oxidation in a ferrocyanide-containing BR solution. Some preliminary explanations of these findings have been given. The proposed method is highly recommended for wider applications in surface science.  相似文献   

5.
Interaction between phospholipid monolayers (dihexadecyl phosphate: DHP, dipalmitoyl phosphatidyl choline: DPPC) and water soluble ethanol has been studied using quartz crystal microbalance (QCM) method and quartz crystal impedance (QCI) method. The quartz crystal oscillator was attached horizontally on the DHP and DPPC monolayers that were formed on the water surface. At low concentration, increased ethanol concentration decreased the frequency for QCM and increased the resistance for QCI. Both frequency and resistance approached asymptotically to a saturation value. A further increase in ethanol concentration induced a sudden and discontinuous linear change (a decrease in frequency and an increase in resistance). Based on these results, we propose the following action mechanism of ethanol on phospholipid monolayers: at low concentration, the ethanol hydrates adsorb into the monolayer/water interface and saturate on the interface. The monolayer viscosity also increases with the adsorption of hydrates. A further increase in concentration causes multilayer formation of hydrates and/or penetration of hydrates into the monolayer core. The viscosity of the interfacial layer (monolayer and interfacial structured water) changes dramatically according to the action of ethanol hydrates.  相似文献   

6.
叶芸  蒋亚东 《高分子学报》2009,(11):1091-1095
利用静电自组装方法在石英玻璃表面交替沉积聚二烯丙基二甲基氯化铵(PDDA)和聚偏氟乙烯(PVDF)超薄膜,制得PDDA/PVDF铁电复合超薄膜.通过石英晶体微天平实时监测超薄膜的沉积,研究了超薄膜的表面形貌、结构及电性能.结果表明,自组装每层PVDF超薄膜的厚度为7.5 nm;PDDA/PVDF铁电复合超薄膜的表面平整、均匀,其中C1s的光电子能谱与极化处理后充负电荷的PVDF铁电聚合物一致,但F1s由于溶解再组装过程而降低了0.3 eV;静电自组装材料纳米级的薄膜厚度和聚合物的络合作用导致了铁电复合超薄膜的非晶结构和高的表面电阻率.  相似文献   

7.
Qi Kang 《Talanta》2007,72(4):1474-1480
A new data treatment method for the improvement of the signal-to-noise ratio of a quartz crystal microbalance (QCM) was proposed, where an averaged resonant frequency was calculated according to its conductance peak in an impedance analysis method. The relationship between the averaged resonant frequency and the medians of the conductance peak at different sampling heights was derived. It was shown that the signal-to-noise ratio of the averaged resonant frequency was about eight times of that of the resonant frequency calculated directly from its equivalent circuit parameters. The averaged resonant frequency of the QCM was applied to monitor the self-assembled process of a 6-O-(2′-(α-thiohydroxyacetamide)-ethyl)-diethoxylsilyl-β-cyclodextrin (OTED-β-CD), on gold surface as well as the adsorption of nitrophenol isomers onto the OTED-β-CD self-assembled monolayer film.  相似文献   

8.
The quartz crystal microbalance method (QCM), in combination with electrochemical impedance spectroscopy (EIS), has been utilized to monitor in situ anti-human IgG adsorption on several Au-based surfaces, bare Au, nanogold/4-aminothiophenol (4AT)/Au, and multi-walled carbon nanotubes (MWCNT)/Au, and succeeding human IgG reactions. Also, the immobilization protocol of anti-human IgG via its glutaraldehyde (GA) cross-linking with self-assembled 4AT on an Au electrode and the subsequent surface immunoreaction were examined. The resonant frequency (f(0)) and the motional resistance (R(1)) of the piezoelectric quartz crystal (PQC) as well as electrochemical impedance parameters were measured and discussed. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of the ferricyanide/ferrocyanide couple were examined before and after electrode modification, the antibody adsorption and antibody-antigen reactions. We found that the amount for antibody adsorption was the greatest on the colloid Au modified surface, and that at MWCNT ranked the second, while specific bioactivity was almost identical on the four kinds of surfaces. Two parameters simultaneously obtained at the colloid Au modified surface, Deltaf(0) and DeltaC(s) (interfacial capacitance), have been used to estimate the association constant of the immunoreaction.  相似文献   

9.
In this paper, we describe DNA electrochemical detection for genetically modified organism (GMO) based on multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole (PPy). DNA hybridization is studied by quartz crystal microbalance (QCM) and electrochemical impedance spectroscopy (EIS). An increase in DNA complementary target concentration results in a decrease in the faradic charge transfer resistance (Rct) and signifying “signal-on” behavior of MWCNTs-PPy-DNA system. QCM and EIS data indicated that the electroanalytical MWCNTs-PPy films were highly sensitive (as low as 4 pM of target can be detected with QCM technique). In principle, this system can be suitable not only for DNA but also for protein biosensor construction.  相似文献   

10.
Wang J  Liu G  Lin Y 《The Analyst》2006,131(4):477-483
We report a flow injection amperometric choline biosensor based on the electrostatic assembly of the choline oxidase (ChO) enzyme and a bienzyme of ChO and horseradish peroxidase (HRP) onto multi-wall carbon nanotubes (MWCNT) modified glassy carbon (GC) electrodes. These choline biosensors were fabricated by immobilization of enzymes on the negatively charged MWCNT surface through alternately assembling a cationic poly(diallydimethylammonium chloride) (PDDA) layer and an enzyme layer. Using this layer-by-layer assembling approach, a bioactive nanocomposite film of PDDA/ChO/PDDA/HRP/PDDA/CNT (ChO/HRP/CNT) and PDDA/ChO/PDDA/CNT (ChO/CNT) was fabricated on the GC surface. Owing to the electrocatalytic effect of carbon nanotubes, the measurement of faradic responses resulting from enzymatic reactions has been realized at low potential with acceptable sensitivity. The ChO/HRP/CNT biosensor is more sensitive than the ChO/CNT one. Experimental parameters affecting the sensitivity of biosensors, e.g., applied potential, flow rate, etc., were optimized and potential interference was examined. The response time for this choline biosensor is fast (few seconds). The linear range of detection for the choline biosensor is from 5.0 x 10(-5) to 5.0 x 10(-3) M and the detection limit is about 1.0 x 10(-5) M.  相似文献   

11.
报道了一种用于抗人乳腺癌糖蛋白单克隆抗体(GP1D8)及相应抗原免疫反应的电化学阻抗免疫分析法。本方法采用将抗体直接定向组装到石英晶片/金电极上,实验中设计的阻抗传感测量只响应免疫信号。结果显示,当组装单克隆抗体的金电极被插入特殊抗原的溶液中时,电化学阻抗谱(EIS)发生明显的变化,成功地检测了组装抗体和相应抗原的免疫反应。  相似文献   

12.
A simple efficient strategy for the simultaneous synthesis and anchoring of liquid crystal (LC)-stabilised gold nanoparticles (NPs) on indium tin oxide (ITO) substrate is described. A monolayer of 3-mercaptopropyltrimethoxy silane (MPS) compound was formed on ITO and quality of the monolayer was assessed using electrochemical techniques namely cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Gold NP preparation was carried out on this monolayer-modified substrate (and on bare ITO), in a single-step reaction, simply by drop-casting a solution containing an appropriate amount of chloroauric acid and a LC compound possessing a terminal amino group, on the MPS monolayer-modified substrate and heating (70degree) for 2-3 min.. The LC compound served as a reducing agent as well as a capping ligand. LC-capped NPs were chemically anchored onto the ITO substrate through bonding to thiol moiety of the MPS. The CV and EIS analysis of the MPS monolayer showed a complete blocking behaviour for the electron transfer across the electrode/electrolyte interface confirming the formation of a high-quality dense compact monolayer. On the other hand, upon immobilisation of LC-gold NP composite on self-assembled monolayer-modified ITO substrates, both CV and impedance studies showed a small current indicating the gold NP-mediated electron transfer, thus confirming the successful immobilisation of NPs.  相似文献   

13.
This Article describes for the first time the formation of a supramolecular self-assembled monolayer of polymeric phthalocyanine (poly(CuPc)) onto a gold substrate. The latter is established through the interaction of the cyano group, belonging to the poly(CuPc), with the metal substrate. The functionalized gold substrate was characterized using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and electrochemical methods. Results clearly demonstrated the interaction between gold and the nitrogen atom of cyano group and showed at the same time the formation of a completely covered polymeric monolayer on the gold surface. In addition, the modified gold surface seems to exhibit a reversible redox behavior and is found to act as an electronic conductor, which allows rapid electron transfer. Electrochemical impedance spectroscopy (EIS) analyses in the presence of [Fe(CN)(6)](3-/4-) as a redox couple revealed that the modified electrode showed a much lower electron transfer resistance compared with bare gold. In addition, the modified electrode is found to catalyze the H(2)O(2) reduction very effectively, showing a catalytic current that varies linearly with the peroxide concentration in the range of 0.35 to 70 μM with a detection limit of 0.25 μM.  相似文献   

14.
A 2-D molecularly imprinted monolayer (2-D MIM) approach was used to prepare a simple and robust sensor for nitroaromatic compounds with 2,4-dinitrotoluene (DNT) as the model compound, which is a precursor and analog for explosive 2,4,6-trinitrotoluene (TNT). In contrast to studies utilizing long-chain hexadecylmercaptan self-assembled monolayers (SAM)s for sensing, a shorter-chain alkylthiol (i.e., butanethiol SAM) was utilized for DNT detection. The role of the chain length of the coadsorbed alkylthiol was emphasized with a matched template during solution adsorption. Semiempirical PM3 quantum calculations were used to determine the molecular conformation and complexation of the adsorbates. A switching mechanism was invoked on the basis of the ability of the template analyte to alter the packing arrangement of the alkylthiol SAMs near defect sites as influenced by the DNT-ethanol solvent complex. A 2-D MIM was formed on the Au surface electrode of a quartz crystal microbalance (QCM), which was then used to sense various concentrations of the analyte. Interestingly, the 2-D MIM QCM also enabled the selective detection of DNT even in a mixed solution of competing molecules, demonstrating the selectivity figure of merit. Likewise, electrochemical impedance spectroscopy (EIS) data at different concentrations of DNT confirmed the 2-D MIM effectiveness for sensing based on the interfacial conformation and electron-transport properties of the imprinted butanethiol SAM.  相似文献   

15.
To study the interaction between liposomes and proteins, intact liposomes were immobilized on a metal planar support by chemical binding and/or bioaffinity using a quartz crystal microbalance (QCM). A large decrease in the resonance frequency of quartz crystal was observed when the QCM, modified by a self-assembled monolayer (SAM) of carboxythiol, was added to liposome solutions. The stable chemical immobilization of intact liposomes onto SAM was judged according to the degree with which adsorbed mass depended on the prepared size of liposomes, as well as on the activation time of SAMs when amino-coupling was introduced, where the liposome coverage of electrodes was 69+/-8% in optimal conditions. When avidin-biotin binding was used on amino-coupling liposome layers, liposome immobilization finally reached 168% coverage of the electrode surface. Denatured protein was also successfully detected according to the change in the frequency of the liposome-immobilized QCM. The adsorbed mass of denatured carbonic anhydrase from bovine onto immobilized liposomes showed a characteristic peak at a concentration of guanidine hydrochloride that corresponded to a molten globule-like state of the protein, although the mass adsorbed onto deactivated SAM increased monotonously.  相似文献   

16.
Molecular pattern formation using chemically modified cytochrome c and green fluorescent protein (GFP) was presented for the application as a bioelectronic device. A protein conjugate was synthesized by the formation of disulfide bridges. In order to make molecular assembly onto the gold-coated substrate, cytochrome c was cross-linked with N-succinimidyl-3-(2-pyridyldithio)propionate (SPDP). After the modification of cytochrome c, it was spontaneously deposited, so that it could be adsorbed onto the gold-coated substrate by self-assembly (SA) technique. Using the cellulose membrane, cytochrome c molecules were deposited onto the gold-coated substrate with the spatial resolution of ca. 0.2 μm. In order to verify the modified cytochrome c, UV absorption spectrum was measured. GFP was adsorbed onto the cytochrome c monolayer by electrostatic force. Fluorescence emission spectrum was investigated to verify the existence of the GFP molecule onto the cytochrome c monolayer. To verify the adsorption of cytochrome c molecules onto the gold-coated substrate and GFP molecules onto the cytochrome c monolayer, the atomic force microscopy and lateral force microscopy investigations were performed. Molecular pattern formation of cytochrome c and GFP molecules were successfully performed by chemical means and electrostatic force.  相似文献   

17.
Gold micro-electrodes with various diameters (25, 50, 75, 100 and 250 μm) were manufactured using standard micro-fabrication techniques and optimized for counting of MCF-7 cells (breast tumor cells) with single cell resolution. For specific cell capture, anti-EpCAM was immobilized on 11-mercaptoundecanoic acid (11-MUA)-3-mercaptopropionic acid (3-MPA) mixed self-assembled monolayer (SAM) modified gold surface of micro-electrodes. Electrodes were characterized using optical, cyclic voltammetry and electrochemical impedance spectroscopic (EIS) techniques. Cell capture response recorded using EIS suggested that optimum electrode dimensions should be analogous to desired cell size. For MCF-7 cells with an average diameter of 18 ± 2 μm, an electrode with 25 μm diameter was established as the optimum electrode size for precise single cell recognition and enumeration. In EIS investigation, the 25 μm electrode exhibited an impedance change of ~2.2 × 10(7) Ω in response to a single tumor cell captured on its surface. On the other hand other electrodes (250, 100, 75 and 50 μm) showed much less response for a single tumor cell. In future, the use of high density arrays of such electrodes with surface modifications will result in miniaturized lab on a chip devices for precise counting of MCF-7 cells with single cell resolution.  相似文献   

18.
An enzyme-immobilized capillary microreactor for rapid protein digestion and proteomics analysis is reported. The inner surface of the fused-silica capillary was coated with poly(diallyldimethylammonium chloride) (PDDA)-entrapped silica sol-gel matrix, followed by assembly of trypsin onto the PDDA-modified surface via electrostatic adsorption. The immobilization parameters such as PDDA content in the sol-gel matrix, trypsin concentration and pH were investigated in detail. Protein samples including beta-casein, myoglobin and cytochrome c could be effectively digested and electrophoretically separated simultaneously in such a modified capillary. Just 2.26 ng (corresponding to 0.10-0.14 picomole) of sample was sufficient for on-line capillary electrophoresis peptide mapping. The efficiency of the digestion was further demonstrated by digestion of a human liver cytoplasm sample and 253 proteins were identified in one unique run.  相似文献   

19.
An n-alkanethiol, octadecanethiol (ODT), monolayer was successfully prepared onto an oxide-free mild steel (MS) surface under cathodic polarization in a 0.1 M LiCl/CH(3)OH solution containing 1 mM ODT. Cyclic voltammetry (CV) and electrochemical impedance (EIS) and sum frequency generation (SFG) spectroscopy were applied to study and characterize the adsorption of ODT at a MS surface. In 0.1 M LiCl/CH(3)OH solution containing 1 mM ODT, CV of the MS electrode shows a dramatic decrease in charging current and a positive shift in oxidation potential when compared to a solution without ODT. The interfacial capacitance was obtained as 2.52 microF/cm(2) from the impedance data. An average chain tilt angle of 48 degrees for the ODT molecules was deduced from the comparison of the interfacial capacitances of the ODT/MS and ODT/Au monolayers. X-ray photoelectron spectroscopy confirmed the formation of the ODT monolayer on mild steel. The ppp SFG spectrum of the ODT-modified MS features three strong methyl vibrational modes at 2877, 2943, and 2967 cm(-1), indicating the formation of the oriented and densely packed ODT monolayer. However, the appearance of the two weak CH(2) groups' vibrational modes at 2850 and 2914 cm(-1) implies the presence of defects in the ODT monolayer. ODT/Au films were prepared to compare with the ODT/MS films. Orientation analysis of the air/solid interface suggests that the methyl group of ODT/Au films has a tilt angle of 30 degrees , while the methyl group of ODT/MS films has a tilt angle of 23 degrees . Water was found to have an impact on the shape of the SFG spectra of ODT/MS. This suggests that the solution penetrated through the defects to reach the MS surface.  相似文献   

20.
This study attempted to determine absolute heparin concentration in phosphate buffer solution (PBS, pH 7.4) by using quartz crystal microbalance (QCM) as an affinity biosensor. Electrochemical impedance spectroscopy (EIS) was also used to investigate immobilization of protamine and heparin assay. In addition, the effectiveness of physical adsorption in immobilizing protamine was confirmed by examining the preparation conditions, including the incubation time and protamine concentration. It induced maximum decrease (ca. −100 Hz) in oscillating frequency of QCM by applying 20 mg/ml protamine and 20 min for incubation in PBS. Heparin adsorption onto protamine-modified electrode in PBS revealed an exponential-like binding curve and long duration for reaching the steady state in frequency response of QCM. Moreover, two linear calibration curves were obtained judging from the initial slope (df/dt) and the frequency change (Δf) of QCM obtained after a binding interval (600 s) for heparin concentrations from 0 to 3.0 and 7.0 U/ml, respectively. In EIS analysis, calibration curves with linear concentration range of 0-3.0 U/ml were obtained for heparin in PBS when ferrocyanide was used as an electroactive marker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号