首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hollow spherical silica particles with hexagonally ordered mesoporous shells are synthesized with the dual use of cetyltrimethylammonium bromide (CTAB) and unmodified polystyrene latex microspheres as templates in concentrated aqueous ammonia. In most of the hollow mesoporous particles, cylindrical pores run parallel to the hollow core due to interactions of CTAB/silica aggregates with the latices. Effects on the product structure of the CTAB:latex ratio, the amount of aqueous ammonia, and the latex size are studied. Hollow particles with hexagonally patterned mesoporous shells are obtained at moderate CTAB:latex ratios. Too little CTAB causes silica shell growth without surfactant templating, and too much induces nucleation of new mesoporous silica particles without latex cores. The concentration of ammonia must be large to induce co-assembly of CTAB, silica, and latex into dispersed particles. The results are consistent with the formation of particles by addition of CTAB/silica aggregates to the surface of latex microspheres. When the size and number density of the latex microspheres are changed, the size of the hollow core and the shell thickness can be controlled. However, if the microspheres are too small (50 nm in this case), agglomerated particles with many hollow voids are obtained, most likely due to colloidal instability.  相似文献   

2.
Combining both nano-replication and nano-imprinting techniques using dual silica templates provides a simple way to synthesize ordered mesoporous carbons with bimodal pore size distributions ( approximately 1.5 nm and approximately 3.5 nm).  相似文献   

3.
Using the porosity of a binary exotemplate, with mesoporous core-shell structure (SiO2@ZrO2), opens a new pathway to produce hybrid core-shell spheres, composite hollow spheres, and porous hollow spheres -- all monodisperse in size.  相似文献   

4.
Calcination of lysozyme-silica hybrid hollow particles gives novel cage-like hollow spherical silicas with differently patterned through-holes on their shell structure.  相似文献   

5.
Mesoporous silica materials with a variety of morphologies, such as monodisperse microspheres, gigantic hollow structures comprising a thin shell with a hole, and gigantic hollow structures consisting of an outer thin shell and an inner layer composed of many small spheres, have been readily synthesized in mixed water-ethanol solvents at room temperature using cetyltrimethylammonium bromide (CTAB) as the template. The obtained mesoporous silica generally shows a disordered mesostructure with typical average pore sizes ranging from 3.1 to 3.8 nm. The effects of the water-to-ethanol volume ratio (r), the volume content of tetraethyl orthosilicate TEOS (x), and the CTAB concentration in the solution on the final morphology of the mesoporous silica products have been investigated. The growth process of gigantic hollow shells of mesoporous silica through templating emulsion droplets of TEOS in mixed water-ethanol solution has been monitored directly with optical microscopy. Generally, the morphology of mesoporous silica can be regulated from microspheres through gigantic hollow structures composed of small spheres to gigantic hollow structures with a thin shell by increasing the water-to-ethanol volume ratio, increasing the TEOS volume content, or decreasing the CTAB concentration. A plausible mechanism for the morphological regulation of mesoporous silica by adjusting various experimental parameters has been put forward by considering the existing state of the unhydrolyzed and partially hydrolyzed TEOS in the synthesis system.  相似文献   

6.
Hollow spherical mesoporous silica was synthesized by using sodium silicate as a precursor and a low concentration of cetyltrimethylammonium bromide (CTAB) (0.154 mol dm–3). The resulting hollow spherical particles were characterized with scanning electron microcopy (SEM), small-angle X-ray diffraction (SXRD), transmission electron microscopy (TEM), and N2 gas adsorption and desorption techniques. The results showed that regular spherical mesoporous silica could be obtained only if the molar ratio of propanol to CTAB was in the range of approximately 8:1–9:1. The spherical particles were hollow (inside), and the shell consisted of smaller particles with a pore structure of hexagonal symmetry. With an increase of the molar ratio of propanol to CTAB, the distance (a value) between centers of two adjacent pores increased, and the pore structure of mesoporous silica became less ordered. N2 adsorption–desorption curves revealed type IV isotherms and H1 hysteresis loops; with an increase of the molar ratio of propanol to CTAB, the pore size with Barrett–Joyner–Halenda (BJH) diameter of the most probable distribution decreased, but the half peak width of the pore size distribution peak increased  相似文献   

7.
The development of a practical synthetic method to functionalize hollow mesoporous silica with organic groups is of current intere st for selective adsorption and ene rgy storage applications.Herein,a facile and controllable one-pot approach for the synthesis of monodisperse amino-functionalized hollow mesoporous silica nanoparticles is presented.A novel solid-to-hollow structural transformation procedure of the silica nanoparticles is presented.The structural transformation is easily designed,as obse rved through transmission electro n microscopy,by tailo ring the HCl and N-lauroylsarcosine sodium molar ratio and the water content in the sol-gel.Ordered and radially oriented in situ aminofunctionalized mesochannels were successfully introduced into the shells of the hollow silica nanoparticles.A formation mechanism for the hollow mesoporous silica materials is discussed.  相似文献   

8.
Hybrid particles which have a core of monodisperse silica particle and a shell of well-defined poly(methyl methacrylate) chains end-grafted on the core surface with a surface density as high as 0.8 chains/nm2 were prepared by surface-initiated atom transfer radical polymerization of methyl methacrylate with an initiator-fixed silica particle. Monolayers of the hybrid particles were formed at the air-water interface by depositing a defined amount of the particle suspension onto water surface. Transmission electron microscopic and atomic force microscopic observations of these monolayers showed that the hybrid particles formed a two-dimensional hexagonally ordered lattice with a wide controllability of interparticle distance. This lattice structure was utilized as a template for the fabrication of a negatively patterned surface of poly(dimethylsiloxane) elastomer.  相似文献   

9.
Mesoporous silica with squared one-dimensional channels (KSW-2-type mesoporous silica), possessing a molecularly ordered framework arising from a starting layered polysilicate kanemite, was obtained through silylation of a surfactant (hexadecyltrimethylammonium, C16TMA)-containing mesostructured precursor with octoxytrichlorosilane (C8H17OSiCl3) and octylmethyldichlorosilane (C8H17(CH3)SiCl2). The presence of the molecular ordering in the silicate framework was confirmed by XRD and TEM. Octoxy groups grafted on KSW-2 can be eliminated by subsequent hydrolysis under very mild condition, and pure mesoporous silica was obtained with the retention of the kanemite-based framework. The framework is structurally stabilized by the attachment of additional SiO4 units to the framework, and the mesostructural ordering hardly changed under the presence of water vapor. A large number of silanol groups remained at the mesopore surfaces because C16TMA ions and octoxy groups can be removed without calcination. Octylmethylsilyl groups are regularly arranged at the mesopore surface due to the molecular ordering in the silicate framework. The molecularly ordered structural periodicity originating from kanemite is retained even after calcination at 550 degrees C, while that in the precursor without silylation disappeared. The synthetic strategy is quite useful for the design of the silicate framework of mesostructured and mesoporous materials with and without surface functional organic groups.  相似文献   

10.
A simple and effective route has been developed for the synthesis of bimodal (3.6 and 9.4 nm) mesoporous silica materials that have two ordered interconnected pore networks. Mesostructures have been prepared through the self-assembly mechanism by using a mixture of polyoxyethylene fluoroalkyl ether and triblock copolymer as building blocks. The investigation of the R(F)(8)(EO)(9)/P123/water phase diagram shows that in the considered surfactant range of concentrations the system is micellar (L(1)). DLS measurements indicate that this micellar phase is composed of two types of micelles; the size of the first one at around 7.6 nm corresponds unambiguously to the pure fluorinated micelles. The second type of micelles at higher diameter consists of fluorinated micelles that have accommodated a weak fraction of P123 molecules. Thus, in this study the bimodal mesoporous silica is really templated by two kinds of micelles.  相似文献   

11.
Core-shell nanoparticles of Au@silica with a diameter of approximate 45–60 nm and wall thickness in range of 3–10 nm were synthesized by using 40 and 50 nm gold nanoparticles as the templates. The mesoporous particles are regulated by 3-aminopropyltrimethoxysilane addition. Hollow mesoporous silica nanocapsules (HMSNs) were prepared by using sodium cyanide to dissolve the gold cores. The characterization of Au@silica and HMSNs by transmission electronic microscope indicated that the silica shells were uniform and smooth, and also the porosity was proved by fluorescein isothiocyanate (FITC) release experiments. The ratio of hollow core to HMSNs is more than 70%. HMSNs were subsequently used as drug carrier to investigate FITC (as a model drug) release behaviors in vitro. Fluorescent spectrometry was performed to determine the release kinetics from the HMSNs. The release profiles are significantly different as compared with the control (free FITC), which show that HMSNs are good drug carriers to control drug release, and have high potential in therapeutic drugs delivery in future applications.  相似文献   

12.
The silica/polymer hybrid hollow nanoparticles with channels and gatekeepers were successfully fabricated with a facile strategy by using thermoresponsive complex micelles of poly(ethylene glycol)-b-poly(N-isopropylacrylamide) (PEG-b-PNIPAM) and poly(N-isopropylacrylamide)-b-poly(4-vinylpyridine) (PNIPAM-b-P4VP) as the template. In aqueous solution, the complex micelles (PEG-b-PNIPAM/PNIPAM-b-P4VP) formed with the PNIPAM block as the core and the PEG/P4VP blocks as the mixed shell at 45 °C and pH 4.0. After shell cross-linking by 1,2-bis(2-iodoethoxyl)ethane (BIEE), tetraethylorthosilicate (TEOS) selectively well-deposited on the P4VP block and processed the sol-gel reaction. When the temperature was decreased to 4 °C, the PNIPAM block became swollen and further soluble, and the PEG-b-PNIPAM block copolymer escaped from the hybrid nanoparticles as a result of swelled PNIPAM and weak interaction between PEG and silica at pH 4.0. Therefore, the hybrid hollow silica nanoparticles with inner thermoresponsive PNIPAM as gatekeepers and channels in the silica shell were successfully obtained, which could be used for switchable controlled drug release. In the system, the complex micelles, as a template, could avoid the formation of larger aggregates during the preparation of the hybrid hollow silica nanoparticles. The thermoresponsive core (PNIPAM) could conveniently control the hollow space through the stimuli-responsive phase transition instead of calcination or chemical etching. In the meantime, the channel in the hybrid silica shell could be achieved because of the escape of PEG chains from the hybrid nanoparticles.  相似文献   

13.
Assemblies of heterodimeric particles were prepared through selective coupling of two kinds of spherical silica particles of different sizes by connection with gold nanoparticles attached anisotropically to the particles.  相似文献   

14.
Stable hollow silica microspheres were synthesized by a solgel method in nonionic W/O emulsion; the mesoporous shell wall of the spheres could have potential applications as controlled release capsules for drugs, dyes, cosmetics and inks, artificial cells, catalysts, and fillers.  相似文献   

15.
Thermal stability on a mixture of triblock polymer (P123) and fluorocarbon surfactant (FC-4) in acidic media for synthesis of ordered mesoporous materials has been carefully investigated by NMR spectroscopy at various treated temperatures (RT-180 degrees C) and the templating mechanism of the mixture on high-temperature synthesis has been proposed. Accordingly, we have designed fluorocarbon-free templates for syntheses of ordered mesoporous silica materials at high temperatures. As expected, ordered mesoporous silica materials with high degree of silica condensation are synthesized at high temperatures from these designed templates.  相似文献   

16.
17.
In this work, an attempt has been made to modify the shape and nanostructure of core-shell materials, which have been usually generated on the basis of amorphous spherical cores. Novel core-shell silicate particles, each of which consists of a silicalite-1 zeolite crystal core and mesoporous shell (ZCMS), were synthesized for the first time. The ZCMS core-shell particles are unique because they are of pseudohexagonal prismatic shape and have hierarchical porosity of both a uniform microporous core and a mesoporous shell coexisting in a particle framework. The nonspherical bimodal porous core-shell particles were then utilized as templates to fabricate a new carbon replica structure. Interestingly, the pore replication process was carried out only through the mesopores in the shell, and not through the micropores due to the narrower micropore size in the core, resulting in nonspherical carbon nanocases with a hollow core and mesoporous shell (HCMS) structure. Nonspherical silica nanocases with HCMS structure were also generated by replication using the carbon nanocases as templates, which are not possible to synthesize through other synthetic methods. Interestingly, the pseudohexagonal prismatic shape of the zeolite crystals was transferred onto the carbon and silica nanocases.  相似文献   

18.
A direct synthetic route leading to titania particles dispersed on nonporous spherical silica particles has been investigated; 5, 10, and 20% (w/w) titania/silica sols mixtures were achieved via hydrolyzation of titanium tetra-isopropxide solution in the mother liquor of a freshly prepared sol of spherical silica particles (St?ber particles). Titania/silica materials were produced by subsequent drying and calcination of the xerogels so obtained for 3 h at 400 and 600 degrees C. The materials were investigated by means of thermal analyses (TGA and DSC), FT-IR, N(2) gas adsorption-desorption, powder X-ray diffraction (XRD), and transmission electron microscopy (TEM). In spite of the low surface area (13.1 m(2)/g) of the pure spherical silica particles calcined at 400 degrees C, high surface area and mesoporous texture titania/silica materials were obtained (e.g., S(BET) ca. 293 m(2)/g for the 10% titania/silica calcined at 400 degrees C). Moreover, the materials were shown to be amorphous toward XRD up to 600 degrees C, while reasonable surface areas were preserved. It has been concluded that dispersion of titania particles onto the surface of the nonporous spherical silica particles increase their roughness, therefore leading to composite materials of less firm packing and mesoporosity.  相似文献   

19.
A submicrometer-scaled polystyrene/melamine-formaldehyde hollow microsphere composite was prepared by self-assembling of sulfonated polystyrene (SPS) latex particles at the interface of emulsion droplets and then being fixed in place using a hard melamine-formaldehyde (MF) composite layer. For control-released purposes, the influential factors that control the size and uniformity of the packed-droplets and the permeability of the composite shell, including the initial particle location, the hydrophilicity and the size of colloidal templates, the oil phase solvent and reserving time of emulsions after the addition of MF prepolymer, were further studied. Relatively uniform sized particle packed-droplets with an average diameter of 10 microm were obtained. The assembled SPS particles kept ordering and minimal conglutination after the preparation of composite microspheres, which allows of controlling the permeability from the interstices between the particles. Porous-mesh-structured MF composite layer was formed to further control the permeability. The morphology of emulsions and composite microspheres were characterized by optical microscopy, scanning and transmission electron microscopy.  相似文献   

20.
Micrometer-sized, monodisperse, hollow polystyrene (PS)/poly(ethylene glycol dimethacrylate) (PEGDM) composite particles with a single hole in the shell were prepared by seeded polymerization using (ethylene glycol dimethacrylate/xylene)-swollen PS particles in the presence of sodium dodecyl sulfate (SDS). Single holes were observed at SDS concentrations above 3 mM, much lower than in the PS/polydivinylbenzene (PDVB) system previously reported (above 45 mM). Phase separation inside droplets occurred at lower conversion in the PEGDM system than the PDVB system. Phase separation in the droplet at the early stage of the polymerization is an important factor for the formation of the single hole in the shell. Part CCCXIII of the series “Studies on Suspension and Emulsion.”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号