首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wen X  Bren KL 《Inorganic chemistry》2005,44(23):8587-8593
Heme axial methionine ligands in ferricytochromes c552 from Hydrogenobacter thermophilus (HT) and Nitrosomonas europaea, both members of the cyt c8 family, display fluxional behavior. The ligand motion, proposed to be inversion at sulfur, results in an unusually small range of hyperfine shifts for heme substituents in these proteins. Herein, heme axial Met fluxion is induced in a structurally homologous cytochrome c551 from Pseudomonas aeruginosa (PA) by substituting heme pocket residue Asn64 with Gln. The mutant, PA-N64Q, displays a highly compressed range of heme substituent hyperfine shifts, temperature-dependent heme methyl resonance line broadening, low rhombic magnetic anisotropy, and a magnetic axes orientation consistent with Met orientational averaging. Analysis of NMR properties of PA-N64Q demonstrates that the heme pocket of the mutant resembles that of HT. This result confirms the importance of peripheral interactions and, in particular, residue 64 in determining axial Met orientation and heme electronic structure in proteins in the cyt c8 family.  相似文献   

2.
Electron paramagnetic resonance (EPR) spectra of variants of Hydrogenobacter thermophilus cytochrome c(552) (Ht c-552) and Pseudomonas aeruginosa cytochrome c(551) (Pa c-551) are analyzed to determine the effect of heme ruffling on ligand-field parameters. Mutations introduced at positions 13 and 22 in Ht c-552 were previously demonstrated to influence hydrogen bonding in the proximal heme pocket and to tune reduction potential (E(m)) over a range of 80 mV [Michel, L. V.; Ye, T.; Bowman, S. E. J.; Levin, B. D.; Hahn, M. A.; Russell, B. S.; Elliott, S. J.; Bren, K. L. Biochemistry 2007, 46, 11753-11760]. These mutations are shown here to also increase heme ruffling as E(m) decreases. The primary effect on electronic structure of increasing heme ruffling is found to be a decrease in the axial ligand-field term Δ/λ, which is proposed to arise from an increase in the energy of the d(xy) orbital. Mutations at position 7, previously demonstrated to influence heme ruffling in Pa c-551 and Ht c-552, are utilized to test this correlation between molecular and electronic structure. In conclusion, the structure of the proximal heme pocket of cytochromes c is shown to play a role in determining heme conformation and electronic structure.  相似文献   

3.
C-type cytochromes with histidine-methionine (His-Met) iron coordination play important roles in electron-transfer reactions and in enzymes. Low-temperature electron paramagnetic resonance (EPR) spectra of low-spin ferric cytochromes c can be divided into two groups, depending on the spread of g values: the normal rhombic ones with small g anisotropy and g(max) below 3.2, and those featuring large g anisotropy with g(max) between 3.3 and 3.8, also denoted as highly axial low spin (HALS) species. Herein we present the detailed magnetic properties of cytochrome c(553) from Bacillus pasteurii (g(max) 3.36) and cytochrome c(552) from Nitrosomonas europaea (g(max) 3.34) over the pH range 6.2 to 8.2. Besides being structurally very similar, cytochrome c(553) shows the presence of a minor rhombic species at pH 6.2 (6 %), whereas cytochrome c(552) has about 25 % rhombic species over pH 7.5. The detailed M?ssbauer analysis of cytochrome c(552) confirms the presence of these two low-spin ferric species (HALS and rhombic) together with an 8 % ferrous form with parameters comparable to the horse cytochrome c. Both EPR and M?ssbauer data of axial cytochromes c with His-Met iron coordination are consistent with an electronic (d(xy))(2) (d(xz))(2) (d(yz))(1) ground state, which is typical for Type I model hemes.  相似文献   

4.
Paramagnetic NMR and optical studies of the oxidized forms of mesophile Pseudomonas aeruginosa cytochrome c(551) and its quintuple mutant (F7A/V13M/F34Y/E43Y/V78I), and thermophile Hydrogenobacter thermophilus cytochrome c(552) demonstrated that the amino acid side chain packings in the protein interior influence the coordination bond between the heme iron and the axial methionine in the proteins. The strength of heme axial coordinations was found to correlate with the overall protein thermostability.  相似文献   

5.
Cytochromes c are small water-soluble proteins that catalyze electron transfer in metabolism and energy conversion processes. Hydrogenobacter thermophilus cytochrome c552 presents a curious case in displaying fluxionality of its heme axial methionine ligand; this behavior is altered by single point mutation of the Q64 residue to N64 or V64, which fixes the ligand in a single configuration. The reorganization energy (λ) of these cytochrome c552 variants is experimentally determined using a combination of rotating disc electrochemistry, chronoamperometry and cyclic voltammetry. The differences between the λ determined from these complementary techniques helps to deconvolute the contribution of the active site and its immediate environment to the overall λ (λTotal). The experimentally determined λ values in conjunction with DFT calculations indicate that the differences in λ among the protein variants are mainly due to the differences in contributions from the protein environment and not just inner-sphere λ. DFT calculations indicate that the position of residue 64, responsible for the orientation of the axial methionine, determines the geometric relaxation of the redox active molecular orbital (RAMO). The orientation of the RAMO with respect to the heme is key to determining electron transfer coupling (HAB) which results in higher ET rates in the wild-type protein relative to the Q64V mutant despite a 150 mV higher λTotal in the former.

Efficient delocalization of the redox-active molecular orbital (RAMO) in HtWT results in an increase in HAB value which in turn accelerates the electron transfer (ET) rate in spite of the higher reorganization energy (λ) than the HtQ64V mutant.  相似文献   

6.
Spectrally resolved infrared stimulated vibrational echo experiments are used to measure the vibrational dephasing of a CO ligand bound to the heme cofactor in two mutated forms of the cytochrome c552 from Hydrogenobacter thermophilus. The first mutant (Ht-M61A) is characterized by a single mutation of Met61 to an Ala (Ht-M61A), while the second variant is doubly modified to have Gln64 replaced by an Asn in addition to the M61A mutation (Ht-M61A/Q64N). Multidimensional NMR experiments determined that the geometry of residue 64 in the two mutants is consistent with a non-hydrogen-bonding and hydrogen-bonding interaction with the CO ligand for Ht-M61A and Ht-M61A/Q64N, respectively. The vibrational echo experiments reveal that the shortest time scale vibrational dephasing of the CO is faster in the Ht-M61A/Q64N mutant than that in Ht-M61A. Longer time scale dynamics, measured as spectral diffusion, are unchanged by the Q64N modification. Frequency-frequency correlation functions (FFCFs) of the CO are extracted from the vibrational echo data to confirm that the dynamical difference induced by the Q64N mutation is primarily an increase in the fast (hundreds of femtoseconds) frequency fluctuations, while the slower (tens of picoseconds) dynamics are nearly unaffected. We conclude that the faster dynamics in Ht-M61A/Q64N are due to the location of Asn64, which is a hydrogen bond donor, above the heme-bound CO. A similar difference in CO ligand dynamics has been observed in the comparison of the CO derivative of myoglobin (MbCO) and its H64V variant, which is caused by the difference in axial residue interactions with the CO ligand. The results suggest a general trend for rapid ligand vibrational dynamics in the presence of a hydrogen bond donor.  相似文献   

7.
Ye T  Kaur R  Wen X  Bren KL  Elliott SJ 《Inorganic chemistry》2005,44(24):8999-9006
We have used protein film voltammetry (PFV) to determine the midpoint potentials of the Pseudomonas aeruginosa, Hydrogenobacter thermophilus, and Nitrosomonas europaea wild-type monoheme cytochromes c (cyts c; PA, HT, and NE, respectively), as well as PA N64Q, HT Q64N, and NE V65delta mutants, as a function of pH, and buffer conditions. Recent studies have suggested that the identity of the 64 position of the heme-binding loop (either Asn or Gln) strongly influences the conformation of the Met ligand that binds the heme iron. The PFV studies reveal that HT and NE possess significantly lower potentials (wild-type cyts c having E(m) values of +227 and +250 mV vs SHE) than PA (+290 mV) in 50 mM phosphate buffer, pH 7 at 3 degrees C. The HT Q64N mutant rises in potential compared to wild-type, and the PA N64Q mutant has a lower potential, indicating relationships between Met ligand fluxion, hydrogen bonding to the Met ligand, and redox chemistry. Surprisingly, NE V65delta, possessing a heme binding loop nearly identical to that of the PA protein, displayed an E(m) of +232 mV, even lower than wild-type NE. These data are discussed in terms of models of Met ligand properties and proton dependence.  相似文献   

8.
Cytochrome c (cyt c) is an electron-transfer heme protein that also binds nitric oxide (NO). In resting cyt c, two endogenous ligands of the heme iron are histidine-18 (His) and methionine-80 (Met) side chains, and NO binding requires the cleavage of one of the axial bonds. Previous femtosecond transient absorption studies suggested the photolysis of either Fe-His or Fe-Met bonds. We aimed at unequivocally identifying the internal side chain that is photodissociated in ferrous cyt c and at monitoring heme structural dynamics, by means of time-resolved resonance Raman (TR3) spectroscopy with approximately 0.6 ps time resolution. The Fe-His stretching mode at 216 cm-1 has been observed in photoproduct TR3 spectra for the first time for a c-type heme. The same transient mode was observed for a model ferrous cyt c N-fragment (residues 1-56) ligated with two His in the resting state. Our TR3 data reveal that upon ferrous cyt c photoexcitation, (i) distal Met side chain is instantly released, producing a five-coordinated domed heme structure, (ii) proximal His side chain, coupled to the heme, exhibits distortion due to strain exerted by the protein, and (iii) alteration in heme-cysteine coupling takes place along with the relaxation of the protein-induced deformations of the heme macrocycle.  相似文献   

9.
An idealized, water-soluble D(2)-symmetric diheme protein is constructed based on a mathematical parametrization of the backbone coordinates of the transmembrane diheme four-helix bundle in cytochrome bc(1). Each heme is coordinated by two His residues from diagonally apposed helices. In the model, the imidazole rings of the His ligands are held in a somewhat unusual perpendicular orientation as found in cytochrome bc(1), which is maintained by a second-shell hydrogen bond to a Thr side chain on a neighboring helix. The resulting peptide is unfolded in the apo state but assembles cooperatively upon binding to heme into a well-folded tetramer. Each tetramer binds two hemes with high affinity at low micromolar concentrations. The equilibrium reduction midpoint potential varies between -76 mV and -124 mV vs SHE in the reducing and oxidizing direction, respectively. The EPR spectrum of the ferric complex indicates the presence of a low-spin species, with a g(max) value of 3.35 comparable to those obtained for hemes b of cytochrome bc(1) (3.79 and 3.44). This provides strong support for the designed perpendicular orientation of the imidazole ligands. Moreover, NMR spectra show that the protein exists in solution in a unique conformation and is amenable to structural studies. This protein may provide a useful scaffold for determining how second-shell ligands affect the redox potential of the heme cofactor.  相似文献   

10.
Unfolding converts Paracoccus versutus cytochrome c-550 into a potent peroxidase (Diederix, R. E. M.; Ubbink, M.; Canters, G. W. ChemBioChem 2002, 3, 110-112). The catalytic activity is accompanied by peroxide-driven inactivation that is prevented, in part, by reducing substrate. Here, the kinetics of inactivation are described, and evidence is presented for the occurrence of a labile intermediate on the catalytic peroxidase pathway of unfolded cytochrome c-550. This intermediate represents a branching point, whereby the protein proceeds along either the productive pathway or self-inactivates. Reducing substrate suppresses inactivation by decreasing the steady-state concentration of the labile intermediate. Inactivation is accompanied by heme degradation. Its chemical reactivity, UV-vis, and EPR properties identify the first intermediate as hydroxyheme-cytochrome c-550, i.e. with heme hydroxylated at one of the heme meso positions. The occurrence of this species argues for the peroxo-iron species in the peroxidase mechanism as the labile intermediate leading to inactivated cytochrome c-550.  相似文献   

11.
We have recently proposed a measure of the thermal stability of a protein: the water-entropy gain at 25?°C upon folding normalized by the number of residues, which is calculated using a hybrid of the angle-dependent integral equation theory combined with the multipolar water model and the morphometric approach. A protein with a larger value of the measure is thermally more stable. Here we extend the study to analyses on the effects of heme on the thermal stability of four cytochromes c (PA c(551), PH c(552), HT c(552), and AA c(555)) whose denaturation temperatures are considerably different from one another despite that they share significantly high sequence homology and similar three-dimensional folds. The major conclusions are as follows. For all the four cytochromes c, the thermal stability is largely enhanced by the heme binding in terms of the water entropy. For the holo states, the measure is the largest for AA c(555). However, AA c(555) has the lowest packing efficiency of heme and the apo polypeptide with hololike structure, which is unfavorable for the water entropy. The highest stability of AA c(555) is ascribed primarily to the highest efficiency of side-chain packing of the apo polypeptide itself. We argue for all the four cytochromes c that due to covalent heme linkages, the number of accessible conformations of the denatured state is decreased by the steric hindrance of heme, and the conformational-entropy loss upon folding becomes smaller, leading to an enhancement of the thermal stability. As for the apo state modeled as the native structure whose heme is removed, AA c(555) has a much larger value of the measure than the other three. Overall, the theoretical results are quite consistent with the experimental observations (e.g., at 25?°C the α-helix content of the apo state of AA c(555) is almost equal to that of the holo state while almost all helices are collapsed in the apo states of PA c(551), PH c(552), and HT c(552)).  相似文献   

12.
A superstructured tetraphenylporphyrin with a covalently attached proximal imidazole axial base and three distal imidazole pickets has been developed as a model for the active site of terminal oxidases such as cytochrome c oxidase. The oxygen adduct of the Fe-only heme (at low temperature) has a diamagnetic NMR and is EPR silent, which taken together with a resonance Raman oxygen isotope sensitive band (nuFe-O) at 575/554 cm-1 (16O2/18O2) indicates formation of a six-coordinate heme-superoxide complex. Unexpectedly, the Fe/Cu complex, where the copper is in a trisimidazole environment approximately 5 A above the heme plane, displays similar characteristics: a diamagnetic NMR, EPR silence, and nuFe-O at 570/544 cm-1. This indicates the dioxygen adduct of this Fe/Cu system is also a superoxide. This contrasts with previously characterized partially reduced dioxygen intermediates of binuclear heme/copper complexes that form Fe/Cu mu-peroxo complexes.  相似文献   

13.
Axial iron ligation and protein encapsulation of the heme cofactor have been investigated as effectors of the reduction potential (E degrees ') of cytochrome c through direct electrochemistry experiments. Our approach was that of partitioning the E degrees ' changes resulting from binding of imidazole, 2-methyl-imidazole, ammonia, and azide to both cytochrome c and microperoxidase-11 (MP11), into the enthalpic and entropic contributions. N-Acetylmethionine binding to MP11 was also investigated. These ligands replace Met80 and a water molecule axially coordinated to the heme iron in cytochrome c and MP11, respectively. This factorization was achieved through variable temperature E degrees ' measurements. In this way, we have found that (i) the decrease in E degrees ' of cytochrome c due to Met80 substitution by a nitrogen-donor ligand is almost totally enthalpic in origin, as a result of the stronger electron donor properties of the exogenous ligand which selectively stabilize the ferric state; (ii) on the contrary, the binding of the same ligands and N-acetylmethionine to MP11 results in an enthalpic stabilization of the reduced state, whereas the entropic effect invariably decreases E degrees ' (the former effect prevails for the methionine ligand and the latter for the nitrogenous ligands). A comparison of the reduction thermodynamics of cytochrome c and the MP11 adducts offers insight on the effect of changing axial heme ligation and heme insertion into the folded polypeptide chain. Principally, we have found that the overall E degrees ' increase of approximately 400 mV, comparing MP11 and native cytochrome c, consists of two opposite enthalpic and entropic terms of approximately +680 and -280 mV, respectively. The enthalpic term includes contributions from both axial methionine binding (+300 mV) and protein encapsulation of the heme (+380 mV), whereas the entropic term is almost entirely manifest at the stage of axial ligand binding. Both terms are dominated by the effects of water exclusion from the heme environment.  相似文献   

14.
Heme a, the metalloporphyrin cofactor unique to cytochrome c oxidases, differs from the more common heme b by two chemical modifications, a C-2 hydroxyethylfarnesyl group and a C-8 formyl group. To elucidate a role of the C-8 formyl group, we compare the heme affinity, spectroscopy, and electrochemistry of a heme a mimic, Fe(diacetyldeuterioporphyrin IX) or Fe(DADPIX), with heme b, Fe(protoporphryrin IX) or Fe(PPIX), incorporated into a designed heme protein. The [Delta7-H3m]2 protein ligand, or maquette, selected for this study contains two equivalent bis-(3-methyl-L-histidine) heme binding sites within a four-alpha-helix bundle scaffold. The spectroscopic data on Fe(PPIX) and Fe(DADPIX) bound to [Delta7-H3m]2 demonstrate that these complexes are excellent synthetic analogues for natural cytochromes b and a, respectively. Comparison of the spectroscopic, electrochemical, and equilibrium thermodynamic data measured for the Fe(PPIX)-[Delta7-H3m]2 maquette with the previously reported Fe(PPIX)-[Delta7-His]2 complex demonstrates that changing the heme axial ligands to 3-methyl-L-histidine from L-histidine does not alter the resulting heme protein properties significantly in either oxidation state. Heme binding studies demonstrate that [Delta7-H3m]2 binds two ferrous Fe(DADPIX) or Fe(PPIX) moieties with similar dissociation constant values. However, in the ferric state, the data show that [Delta7-H3m]2 only binds a single Fe(DADPIX) and that one 2500-fold weaker than oxidized Fe(PPIX). The data demonstrate that the 4.6 kcal mol(-1) weakened affinity of [Delta7-H3m]2 for oxidized Fe(DADPIX) results in the majority of the 160 mV, 3.7 kcal mol(-1), positive shift in the heme reduction potential relative to Fe(PPIX). These data indicate that a role of the formyl group on heme a is to raise the iron reduction potential, thus making it a better electron acceptor, but that it does so by destabilizing the affinity of bis-imidazole sites for the ferric state.  相似文献   

15.
The ferric forms of Met80X mutants of yeast iso-1-cytochrome c (X = Ala, Ser, Asp, and Glu) display EPR and optical spectra that are strongly pH dependent. At low pH values (pH approximately 5) the sixth coordination sites are filled by H(2)O that, on elevating the pH, is replaced by OH(-) in the cases of Met80Ala and -Ser (pK approximately 5.6 and 5.9, respectively) and by a lysine amino group in the cases of Met80Asp and -Glu (pK approximately 9.3 and 11.6, respectively). The ligand sets and the pK values of the transitions are rationalized in terms of the structure of the heme pocket, and a possible mechanism of the "trigger" in the alkaline transition of the native protein is suggested.  相似文献   

16.
A specific DNA oligonucleotide--hemin complex (PS2.M--hemin complex) that exhibits DNA-enhanced peroxidative activity was studied by EPR and UV--visible spectroscopy and by chemical probing analysis. EPR data obtained from low-temperature experiments on the PS2.M--hemin complex showed both a low-field g approximately 6 and a high-field g approximately 2 signal. These EPR signals are typical of high-spin ferric heme with axial symmetry as judged by the EPR spectrum of six-coordinate heme iron in acidic Fe(III)-myoglobin. This similarity is consistent with the presence of two axial ligands to the heme iron within the PS2.M--hemin complex, one of which is a water molecule. Optical analyses of the acid-base transition for the hemin complex yielded a pK(a) value for the water ligand of 8.70 +/- 0.03 (mean +/- SD). Low-temperature EPR analysis coupled with parallel spin-trapping investigations following the reaction of the PS2.M--hemin complex and hydrogen peroxide (H(2)O(2)) indicated the formation of a carbon-centered radical, most likely on the PS2.M oligonucleotide. Chemical probing analysis identified specific guanine bases within the PS2.M sequence that underwent oxidative damage upon reaction with H(2)O(2). These and other experimental findings support the hypothesis that the interaction of specific guanines of PS2.M with the bound hemin cofactor might contribute to the superior peroxidative activity of the PS2.M--hemin complex.  相似文献   

17.
PpoA is a fungal dioxygenase that produces hydroxylated fatty acids involved in the regulation of the life cycle and secondary metabolism of Aspergillus nidulans . It was recently proposed that this novel enzyme employs two different heme domains to catalyze two separate reactions: within a heme peroxidase domain, linoleic acid is oxidized to (8R)-hydroperoxyoctadecadienoic acid [(8R)-HPODE]; in the second reaction step (8R)-HPODE is isomerized within a P450 heme thiolate domain to 5,8-dihydroxyoctadecadienoic acid. In the present study, pulsed EPR methods were applied to find spectroscopic evidence for the reaction mechanism, thought to involve paramagnetic intermediates. We observe EPR resonances of two distinct heme centers with g-values typical for Fe(III) S = (5)/(2) high-spin (HS) and Fe(III) S = (1)/(2) low-spin (LS) hemes. (14)N ENDOR spectroscopy on the S = (5)/(2) signal reveals resonances consistent with an axial histidine ligation. Reaction of PpoA with the substrate leads to the formation of an amino acid radical on the early millisecond time scale concomitant to a substantial reduction of the S = (5)/(2) heme signal. High-frequency EPR (95- and 180-GHz) unambiguously identifies the new radical as a tyrosyl, based on g-values and hyperfine couplings from spectral simulations. The radical displays enhanced T(1)-spin-lattice relaxation due to the proximity of the heme centers. Further, EPR distance measurements revealed that the radical is distributed among the monomeric subunits of the tetrameric enzyme at a distance of approximately 5 nm. The identification of three active paramagnetic centers involved in the reaction of PpoA supports the previously proposed reaction mechanism based on radical chemistry.  相似文献   

18.
Tai H  Munegumi T  Yamamoto Y 《Inorganic chemistry》2010,49(23):10840-10846
In the denatured state of Hydrogenobacter thermophilus cytochrome c(552) (HT), the N-terminal amino group of the polypeptide chain is coordinated to the heme Fe in place of the axial Met, the His-N(term) form being formed [Tai, H., Munegumi, T., Yamamoto, Y. Inorg. Chem. 2009, 48, 331-338]. Since the His-N(term) form can be considered as an ordered residual structure in the denatured protein, its stability significantly influences the energy of the denatured state. In this study, the His-N(term) forms of the wild-type HT and its mutants possessing a series of amino acid residues at the N-terminal, such as N1D, N1E, and N1G, have been characterized to elucidate the physicochemical properties of the N-terminal residue responsible for the control of the thermodynamic stability of the His-N(term) form. The study revealed that the thermodynamic stability of the His-N(term) form depends highly on the basicity of the N-terminal amino group of the polypeptide chain in such a manner that an increase in the pK(a) value of the N-terminal amino group by 1 unit results in stabilization of the bond between heme Fe and the N-terminal amino group (Fe-N(term) bond) in the His-N(term) form by ~4 kJ mol(-1). The empirical hard and soft acid and base principle could account for the observed relationship between the pK(a) value of the N-terminal amino group and the stability of the Fe-N(term) bond in the His-N(term) form. In addition, the study demonstrated that the overall stability of the protein can be manipulated through the energy of the denatured protein by changing the thermodynamic stability of the His-N(term) form. Consequently, the overall stability of the protein has been shown to be controlled through alteration of the basicity of the N-terminal amino group of the polypeptide chain. These findings provide new insights into the stabilizing interactions in the denatured protein, which are relevant as to characterization of the protein stability and folding.  相似文献   

19.
The preparation and characterization of the following bis-imidazole and bis-pyridine complexes of octamethyltetraphenylporphyrinatoiron(III), Fe(III)OMTPP, octaethyltetraphenylporphyrinatoiron(III), Fe(III)OETPP, and tetra-beta,beta'-tetramethylenetetraphenylporphyrinatoiron(III), Fe(III)TC(6)TPP, are reported: paral-[FeOMTPP(1-MeIm)(2)]Cl, perp-[FeOMTPP(1-MeIm)(2)]Cl, [FeOETPP(1-MeIm)(2)]Cl, [FeTC(6)TPP(1-MeIm)(2)]Cl, [FeOMTPP(4-Me(2)NPy)(2)]Cl, and [FeOMTPP(2-MeHIm)(2)]Cl. Crystal structure analysis shows that paral-[FeOMTPP(1-MeIm)(2)]Cl has its axial ligands in close to parallel orientation (the actual dihedral angle between the planes of the imidazole ligands is 19.5 degrees ), while perp-[FeOMTPP(1-MeIm)(2)]Cl has the axial imidazole ligand planes oriented at 90 degrees to each other and 29 degrees away from the closest N(P)-Fe-N(P) axis. [FeOETPP(1-MeIm)(2)]Cl has its axial ligands close to perpendicular orientation (the actual dihedral angle between the planes of the imidazole ligands is 73.1 degrees ). In all three cases the porphyrin core adopts relatively purely saddled geometry. The [FeTC(6)TPP(1-MeIm)(2)]Cl complex is the most planar and has the highest contribution of a ruffled component in the overall saddled structure compared to all other complexes in this study. The estimated numerical contribution of saddled and ruffled components is 0.68:0.32, respectively. Axial ligand planes are perpendicular to each other and 15.3 degrees away from the closest N(P)-Fe-N(P) axis. The Fe-N(P) bond is the longest in the series of octaalkyltetraphenylporphyrinatoiron(III) complexes due to [FeTC(6)TPP(1-MeIm)(2)]Cl having the least distorted porphyrin core. In addition to these three complexes, two crystalline forms each of [FeOMTPP(4-Me(2)NPy)(2)]Cl and [FeOMTPP(2-MeHIm)(2)]Cl were obtained. In all four of these cases the axial planes are in nearly perpendicular planes in spite of quite different geometries of the porphyrin cores (from purely saddled to saddled with 30% ruffling). The EPR spectral type correlates with the geometry of the OMTPP, OETPP and TC(6)TPP complexes. For the paral-[FeOMTPP(1-MeIm)(2)]Cl, a rhombic signal with g(1) = 1.54, g(2) = 2.51, and g(3) = 2.71 is consistent with nearly parallel axial ligand orientation. For all other complexes of this study, "large g(max)" signals are observed (g(max) = 3.61 - 3.27), as are observed for nearly perpendicular ligand plane arrangement. On the basis of this and previous work, the change from "large g(max)" to normal rhombic EPR signal occurs between axial ligand plane dihedral angles of 70 degrees and 30 degrees.  相似文献   

20.
A series of axially ligated complexes of iron(III) octamethyltetraphenylporphyrin, (OMTPP)Fe(III), octaethyltetraphenylporphyrin, (OETPP)Fe(III), its perfluorinated phenyl analogue, (F(20)OETPP)Fe(III), and tetra-(beta,beta'-tetramethylene)tetraphenylporphyrin, (TC(6)TPP)Fe(III), have been prepared and characterized by (1)H NMR spectroscopy: chloride, perchlorate, bis-4-(dimethylamino)pyridine, bis-1-methylimidazole, and bis-cyanide. Complete spectral assignments have been made using 1D and 2D techniques. The temperature dependences of the proton resonances of the complexes show significant deviations from simple Curie behavior and evidence of ligand exchange, ligand rotation, and porphyrin ring inversion at ambient temperatures. At temperatures below the point where dynamics effects contribute, the temperature dependences of the proton chemical shifts of the complexes could be fit to an expanded version of the Curie law using a temperature-dependent fitting program developed in our laboratory that includes consideration of a thermally accessible excited state. The results show that, although the ground state differs for various axial ligand complexes and is usually fully consistent with that observed by EPR spectroscopy at 4.2 K, the excited state often has S = (3)/(2) (or S = (5)/(2) in the cases where the ground state has S = (3)/(2)). The EPR spectra (4.2 K) of bis-4-(dimethylamino)pyridine and bis-1-methylimidazole complexes show "large-g(max)" signals with g(max) = 3.20 and 3.12, respectively, and the latter also shows a normal rhombic EPR signal, indicating the presence of low-spin (LS) (d(xy))(2)(d(xz),d(yz))(3) ground states for both. The bis-cyanide complex also yields a large-g(max) EPR spectrum with g = 3.49 and other features that could suggest that some molecules have the (d(xz),d(yz))(4)(d(xy))(1) ground state. The EPR spectra of all five-coordinate chloride complexes have characteristic features of predominantly S = (5)/(2) ground-state systems with admixture of 1-10% of S = (3)/(2) character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号