首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KNi(4)(PO(4))(3) has been synthesised following a method previously reported by some of us and studied on the basis of magnetization and neutron powder diffraction (NPD) data. Magnetization measurements suggest the coexistence of ferromagnetic (FM) and antiferromagnetic (AFM) interactions: magnetization versus magnetic field curves present a remanent magnetization of around 2.15 micro(B) at T=2 K. The magnetic structure of the KNi(4)(PO(4))(3) has been determined at low temperature from the NPD data. These measurements show that there are three magnetic sub-lattices of Ni(2+) ions, which interact through common oxygen or phosphate groups, giving rise to FM and AFM couplings. The resulting interactions are FM in nature. Such a complex behaviour could provide an interesting model to analyse magnetic interactions in more condensed systems, such in mixed metal oxides.  相似文献   

2.
The synthesis and magnetic properties of three isostructural hexadecametallic manganese clusters [Mn(16)O(16)(OMe)(6)(O(2)CCH(2)Ph)(16)(MeOH)(6)] (1), [Mn(16)O(16)(OMe)(6)(O(2)CCH(2)Cl)(16)(MeOH)(6)] (2), and [Mn(16)O(16)(OMe)(6)(O(2)CCH(2)Br)(16)(MeOH)(6)] (3) are reported. The complexes were prepared by a reductive aggregation reaction involving phenylacetic acid, chloroacetic acid or bromoacetic acid, and NBu(n)()(4)MnO(4) in MeOH. Complex 1 crystallizes in the monoclinic space group C2/c and consists of 6 Mn(IV) and 10 Mn(III) ions held together by 14 mu(3)-O(2)(-), 2 mu-O(2)(-), 4 mu-MeO(-), and 2 mu-O(2)CCH(2)Ph(-) groups. The remaining 14 mu-O(2)CCH(2)Ph(-) ligands, 2 mu-MeO(-) groups, and 6 terminal MeOH molecules constitute the peripheral ligation in the complex. Variable-temperature, solid-state dc magnetic susceptibility measurements on 1-3 in the temperature range 5.0-300 K reveal that all three complexes are dominated by intramolecular antiferromagnetic exchange interactions. Low-lying excited states preclude an exact determination of the spin ground state for 1-3 by magnetization measurements. Alternating current susceptibility measurements at zero dc field in the temperature range 1.8-10 K and a 3.5 G ac field oscillating at frequencies in the 5-1488 Hz range display, at temperatures below 3 K, a nonzero, frequency-dependent chi(M)"signal for complexes 1-3, with the peak maxima lying at temperatures less than 1.8 K. Single-crystal magnetization versus dc field scans down to 0.04 K for complex 1 show hysteresis behavior at <1 K, establishing 1 as a new member of the SMM family. No clear steps characteristic of quantum tunneling of magnetization (QTM) were observed in the hysteresis loops.  相似文献   

3.
The reaction of [Mn(3)O(O(2)CMe)(6)(py)(3)](ClO(4)) (1; 3Mn(III)) with [Mn(10)O(4)(OH)(2)(O(2)CMe)(8)(hmp)(8)](ClO(4))(4) (2; 10Mn(III)) in MeCN affords the new mixed-valent complex [Mn(21)O(14)(OH)(2)(O(2)CMe)(16)(hmp)(8)(pic)(2)(py)(H(2)O)](ClO(4))(4) (3; 3Mn(II)-18Mn(III); hmp(-) is the anion of 2-(hydroxymethyl)pyridine), with an average Mn oxidation state of +2.85. Complex 3.7MeCN crystallizes in the triclinic space group P. The structure consists of a low symmetry [Mn(21)(micro(4)-O)(4)(micro(3)-O)(12)(micro-O)(16)] core, with peripheral ligation provided by 16 MeCO(2)(-), 8 hmp(-), and 2 pic(-) groups and one molecule each of water and pyridine. The magnetic properties of 3 were investigated by both dc and ac magnetic susceptibility measurements. Fitting of dc magnetization data collected in the 0.1-0.8 T and 1.8-4.0 K ranges gave S = (17)/(2), D approximately -0.086 cm(-)(1), and g approximately 1.8, where S is the molecular spin of the Mn(21) complex and D is the axial zero-field splitting parameter. ac susceptibility studies in the 10-997 Hz frequency range reveal the presence of a frequency-dependent out-of-phase ac magnetic susceptibility (chi(M)' ') signal consistent with slow magnetization relaxation rates. Fitting of dc magnetization decay versus time data to the Arrhenius equation gave a value of the effective barrier to relaxation (U(eff)) of 13.2 K. Magnetization versus applied dc field sweeps exhibited hysteresis. Thus, complex 3 is a new member of the small but growing family of single-molecule magnets.  相似文献   

4.
A one-dimensional chain of interconnected single-molecule magnets (SMMs) is obtained that consists of [Mn(4)(hmp)(6)](4+) units bridged by chloride ions. Slow magnetization relaxation is evident in the AC susceptibility data and in magnetization hysteresis measurements for [Mn(4)(hmp)(6)Cl(2)](n)(ClO(4))(2)(n). The magnetization hysteresis loops for this complex are similar to those for an SMM and show significant coercive field and steps at regular magnetic intervals. Spin-canted antiferromagnetic coupling due to misalignment of easy axes of neighboring Mn(4) units is also observed for this complex.  相似文献   

5.
We have prepared a pillared layer magnetic material containing a noncoordinated aromatic molecule, [{MnII(pyrimidine)(H2O)}2{MnII(H2O)2}{WV(CN)8}2](pyrimidine)2.2H2O. This compound has one-dimensional channels (6.2 x 2.1 A) that are occupied by noncoordinated pyrimidine. The magnetization versus temperature plots showed the magnetic phased transition temperature (TC) was 47 K. The magnetization versus external magnetic field plots showed that the saturation magnetization (MS) value was 13.0 muB at 2 K. This MS value indicates that an antiferromagnetic interaction operates between the WV (S = 1/2) and MnII (S = 5/2) ions. The magnetic hysteresis loop showed that the coercive field (HC) was 17 G at 2 K.  相似文献   

6.
Site-selective carboxylate abstraction has been achieved from [Mn(12)O(12)(O(2)CR)(16)(H(2)O)(4)] complexes by treatment with HNO(3) in MeCN. The reaction of the R = Ph or CH(2)Bu(t)() complexes with 4 equiv of HNO(3) gives [Mn(12)O(12)(NO(3))(4)(O(2)CR)(12)(H(2)O)(4)] (R = CH(2)Bu(t) (6) or Ph (7)) in analytical purity. Complex 6.MeNO(2) crystallizes in monoclinic space group C2/c with the following cell parameters at -168 degrees C: a = 21.280(5), b = 34.430(8), c = 33.023(8) A, beta = 104.61(1) degrees, V = 23413 A, and Z = 8. The four NO(3)(-) groups are not disordered and are bound in bridging modes at axial positions formerly occupied by bridging carboxylate groups. (1)H NMR spectroscopy in CD(2)Cl(2) and CDCl(3) shows retention of the solid-state structure on dissolution in these solvents. DC magnetic susceptibility (chi(M)) and magnetization (M) studies have been carried out in the 2.00-300 K and 1.0-7.0 T ranges. Fits of M/Nmu(B) versus H/T plots gave S = 10, g = 1.92, and D = -0.40 cm(-1), where D is the axial zero-field splitting parameter. AC magnetic susceptibility studies on 6 have been performed in the 1.70-10.0 K range in a 3.5 Oe field oscillating at frequencies up to 1500 Hz. Out-of-phase magnetic susceptibility (chi(M)' ') signals were observed in the 4.00-8.00 K range which were frequency-dependent. Thus, 6 displays the slow magnetization relaxation diagnostic of a single-molecule magnet (SMM). The data were fit to the Arrhenius law, and this gave the effective barrier to relaxation (U(eff)) of 50.0 cm(-1) (72.0 K) and a pre-exponential (1/tau(0)) of 1.9 x 10(8) s(-1). Complex 6 also shows hysteresis in magnetization versus DC field scans, and the hysteresis loops show steps at regular intervals of magnetic field, the diagnostic evidence of field-tuned quantum tunneling of magnetization. High-frequency EPR (HFEPR) spectroscopy on oriented crystals of complex 6 shows resonances assigned to transitions between zero-field split M(s) states of the S = 10 ground state. Fitting of the data gave S = 10, g = 1.99, D = -0.46 cm(-1), and B(4)(0) = -2.0 x 10(-5), where B(4)(0) is the quartic zero-field coefficient. The combined results demonstrate that replacement of four carboxylate groups with NO(3)(-) groups leads to insignificant perturbation of the magnetic properties of the Mn(12) complex. Complex 6 should now be a useful starting point for further reactivity studies, taking advantage of the good leaving group properties of the NO(3)(-) ligands.  相似文献   

7.
The largest single-molecule magnet (SMM) to date has been prepared and studied. Recrystallization of known [Mn(12)O(12)(O(2)CCH(2)Bu(t))(16)(H(2)O)(4)] (1; 8Mn(III), 4Mn(IV)) from CH(2)Cl(2)/MeNO(2) causes its conversion to [Mn(30)O(24)(OH)(8)(O(2)CCH(2)Bu(t))(32)(H(2)O)(2)(MeNO(2))(4)] (2; 3Mn(II), 26Mn(III), Mn(IV)). The structure of 2 consists of a central, near-linear [Mn(4)O(6)] backbone, to either side of which are attached two [Mn(13)O(9)(OH)(4)] units. Peripheral ligation around the resulting [Mn(30)O(24)(OH)(8)] core is by 32 Bu(t)CH(2)CO(2)(-), 2 H(2)O, and 4 MeNO(2) groups. The molecule has crystallographically imposed C(2) symmetry. Variable-temperature and -field magnetization (M) data were collected in the 1.8-4.0 K and 0.1-0.4 T ranges and fit by matrix diagonalization assuming only the ground state is occupied at these temperatures. The fit parameters were S = 5, D = -0.51 cm(-1) = -0.73 K, and g = 2.00, where D is the axial zero-field splitting parameter. AC susceptibility measurements in the 1.8-7.0 K range in a zero DC field and a 3.5 G AC field oscillating at frequencies in the 50-997 Hz range revealed a frequency-dependent out-of-phase (chi(M)') signal below 3 K, indicating 2 to be a single-molecule magnet (SMM), the largest yet obtained. Magnetization versus DC field sweeps show hysteresis loops but no clear steps characteristic of quantum tunneling of magnetization (QTM). However, magnetization decay data below 1 K were collected and used to construct an Arrhenius plot that revealed temperature-independent relaxation below 0.3 K. The fit of the thermally activated region above approximately 0.5 K gave U(eff)/k = 15 K, where U(eff) is the effective relaxation barrier. Resonant QTM was confirmed from the appearance of a "quantum hole" when the recent quantum hole digging method was employed. The combined results demonstrate that SMMs can be prepared that are significantly larger than any known to date and that this new, large Mn(30) complex still demonstrates quantum behavior.  相似文献   

8.
The combined use of the anion of phenyl(2-pyridyl)ketone oxime (ppko(-)) and azides (N(3)(-)) in nickel(II) carboxylate chemistry has afforded two new Ni(II)(5) clusters, [Ni(5)(O(2)CR')(2)(N(3))(4)(ppko)(4)(MeOH)(4)] [R' = H (1), Me (2)]. The structurally unprecedented {Ni(5)(μ-N(3))(2)(μ(3)-N(3))(2)}(6+) cores of the two clusters are almost identical and contain the five Ni(II) atoms in a bowtie topology. Two N(3)(-) ions are end-on doubly bridging and the other two ions end-on triply bridging. The end-on μ(3)-N(3)(-) groups link the central Ni(II) atoms with the two peripheral metal ions on either side of the molecule, while the Ni···Ni bases of the triangles are each bridged by one end-on μ-N(3)(-) group. Variable-temperature, solid-state direct- (dc) and alternating-current (ac) magnetic susceptibility, and magnetization studies at 2.0 K were carried out on both complexes. The data indicate an overall ferromagnetic behavior and an S = 5 ground state for both compounds. The ac susceptibility studies on 1 reveal nonzero, frequency-dependent out-of-phase (χ(M)") signals at temperatures below ~3.5 K; complex 2 reveals no χ(M)" signals. However, single-crystal magnetization versus dc field scans at variable temperatures and variable sweep rates down to 0.04 K on 1 reveal no noticeable hysteresis loops, except very minor ones at 0.04 K assignable to weak intermolecular interactions propagated by nonclassical hydrogen bonds.  相似文献   

9.
Two binuclear metal-radical complexes, formed by the reaction of M(hfac)(2) x 2H(2)O (M = Mn or Ni; hfac = hexafluoroacetylacetonate) with the 1,5-dimethyl-3-(4,6-dimethylpyrimidin-2-yl)-6-oxoverdazyl radical (3), were synthesized. The binuclear Mn complex 5 (i.e., 3[Mn(hfac)(2)](2)) crystallizes in the monoclinic space group C2/c: C(30)H(17)N(6)O(9)F(24)Mn(2), a = 29.947(3), b = 17.143(3), c = 16.276(3) A, beta = 123.748(3)*, Z = 4. The compound consists of two pseudo-octahedral Mn(II) ions, both bearing two hfac ancillary ligands, bridged by the bis(bidentate) radical 3. The temperature dependence of the magnetic susceptibility of 5 reveals moderate antiferromagnetic exchange between each of the Mn(II) ions and the verdazyl radical (J = -48 cm(-1)). The S = 9/2 ground spin state of the complex was corroborated by low-temperature magnetization versus field measurements. In contrast, the magnetic susceptibility versus temperature behavior of 6 (whose molecular structure is presumed to be analogous to that of 5) indicates that the two Ni(II) ions are strongly ferromagnetically coupled to the verdazyl radical (J = +220 cm(-1)). The magnetization versus field behavior of 5 is consistent with an S = 5/2 ground-state species.  相似文献   

10.
The initial employment of 2-(hydroxymethyl)pyridine for the synthesis of Mn/Ln (Ln = lanthanide) and Mn/Y clusters, in the absence of an ancillary organic ligand, has afforded a family of tetranuclear [Mn(III)(2)M(III)(2)(OH)(2)(NO(3))(4)(hmp)(4)(H(2)O)(4)](NO(3))(2) (M = Dy, 1; Tb, 2; Gd, 3; Y; 4) anionic compounds. 1-4 possess a planar butterfly (or rhombus) core and are rare examples of carboxylate-free Mn/Ln and Mn/Y clusters. Variable-temperature dc and ac studies established that 1 and 2, which contain highly anisotropic Ln(III) atoms, exhibit slow relaxation of their magnetization vector. Fitting of the obtained magnetization (M) versus field (H) and temperature (T) data for 3 by matrix diagonalization and including only axial anisotropy (zero-field splitting, ZFS) showed the ground state to be S = 3. Complex 4 has an S = 0 ground state. Fitting of the magnetic susceptibility data collected in the 5-300 K range for 3 and 4 to the appropriate van Vleck equations revealed, as expected, extremely weak antiferromagnetic interactions between the paramagnetic ions; for 3, J(1) = -0.16(2) cm(-1) and J(2) = -0.12(1) cm(-1) for the Mn(III)···Mn(III) and Mn(III)···Gd(III) interactions, respectively. The S = 3 ground state of 3 has been rationalized on the basis of the spin frustration pattern in the molecule. For 4, J = -0.75(3) cm(-1) for the Mn(III)···Mn(III) interaction. Spin frustration effects in 3 have been quantitatively analyzed for all possible combinations of sign of J(1) and J(2).  相似文献   

11.
Zheng YZ  Lan Y  Anson CE  Powell AK 《Inorganic chemistry》2008,47(23):10813-10815
Two planar tetranuclear dysprosium(III) complexes, [Dy(4)(mu(3)-OH)(2)(hmmpH)(2)(hmmp)(2)(Cl)(4)].3MeCN.MeOH (1) and [Dy(4)(mu(3)-OH)(2)(hmmpH)(2)(hmmp)(2)(N(3))(4)].4MeOH (2) {hmmpH(2) = 2-[(2-hydroxyethylimino)methyl]-6-methoxyphenol}, which exhibit an anion-dependent magnetic slow relaxation behavior, have been synthesized by in situ condensation of o-vanillin and 2-aminoethanol. The higher energy barrier observed in 2 could be the result of a more favorable crystal field and/or orientations of single-ion easy axes of magnetization of the Dy(III) ions.  相似文献   

12.
The reactions of the Mn(III)(3) and Mn(II)Mn(III)(2) complexes [Mn(3)O(O(2)CEt)(6)(py)(3)][ClO(4)] and [Mn(3)O(O(2)CEt)(6)(py)(3)] with pyridine-2,6-dimethanol (pdmH(2)) afford the mixed-valence Mn(II)(6)Mn(III)(2) octanuclear complex [Mn(8)O(2)(py)(4)(O(2)CEt)(8)(L)(2)][ClO(4)](2) (1) and the Mn(II)(7)Mn(III)(2) enneanuclear complex [Mn(9)(O(2)CEt)(12)(pdm)(pdmH)(2)(L)(2)] (2), respectively. Both compounds contain a novel pentadentate ligand, the dianion of (6-hydroxymethylpyridin-2-yl)-(6-hydroxymethylpyridin-2-ylmethoxy)methanol (LH(2)), which is the hemiacetal formed in situ from the Mn-assisted oxidation of pdmH(2). Complex 1 crystallizes in the monoclinic space group P2(1)/n with the following cell parameters at -160 degrees C: a = 16.6942(5) A, b = 13.8473(4) A, c = 20.0766(6) A, beta = 99.880(1) degrees, V = 4572.27 A(3), and Z = 2, R (R(w)) = 4.78 (5.25). Complex 2.0.2MeCN crystallizes in the triclinic space group Ponemacr; with the following cell parameters at -157 degrees C: a = 12.1312(4) A, b = 18.8481(6) A, c = 23.2600(7) A, alpha = 78.6887(8) degrees, beta = 77.9596(8) degrees, gamma = 82.3176(8) degrees, V = 5076.45 A(3), and Z = 2, R (R(w)) = 4.12 (4.03). Both complexes are new structural types comprising distorted-cubane units linked together, albeit in two very different ways. In addition, complex 2 features three distinct binding modes for the chelating ligands derived from deprotonated pdmH(2). Complexes 1 and 2 were characterized by variable-temperature ac and dc magnetic susceptibility measurements and found to possess spin ground states of 0 and 11/2, respectively. Least-squares fitting of the reduced magnetization data gave S = 11/2, g = 2.0, and D = -0.11 cm(-1) for complex 2, where D is the axial zero-field splitting parameter. Direct current magnetization versus field studies on 2 at <1 K show hysteresis behavior at <0.3 K, establishing 2 as a new single-molecule magnet. Magnetization decay measurements gave an effective barrier to magnetization relaxation of U(eff) = 3.1 cm(-1) = 4.5 K.  相似文献   

13.
Nine members of a new family of polynuclear ferric complexes have been synthesized and characterized. The reaction of Fe(O(2)CMe)(2) with polydentate Schiff base proligands (H(2)L) derived from salicylidene-2-ethanolamine, followed in some cases by reaction with carboxylic acids, has afforded new complexes of general formulas [Fe(2)(pic)(2)(L)(2)] (where pic(-) is the anion of 2-picolinic acid), [Fe(3)(O(2)CMe)(3)(L)(3)], [Fe(4)(OR)(2)(O(2)CMe)(2)(L)(4)], and [Fe(5)O(OH)(O(2)CR)(4)(L)(4)]. The tri-, tetra-, and pentanuclear complexes all possess unusual structures and novel core topologies. M?ssbauer spectroscopy confirms the presence of high-spin ferric centers in the tri- and pentanuclear complexes. Variable-temperature magnetic measurements suggest spin ground states of S = 0, 1/2, 0, and 5/2 for the bi-, tri-, tetra-, and pentanuclear complexes, respectively. Fits of the magnetic susceptibility data have provided the magnitude of the exclusively antiferromagnetic exchange interactions. In addition, an easy-axis-type magnetic anisotropy has been observed for the pentanuclear complexes, with D values of approximately -0.4 cm(-)(1) determined from modeling the low-temperature magnetization data. A low-temperature micro-SQUID study of one of the pentanuclear complexes reveals magnetization hysteresis at nonzero field. This is attributed to an anisotropy-induced energy barrier to magnetization reversal that is of molecular origin. Finally, an inelastic neutron scattering study of one of the trinuclear complexes has revealed that the magnetic behavior arises from two distinct species.  相似文献   

14.
The reaction of Cr(Bztacn)(CN)3 (Bztacn is 1,4,7-trisbenzyl-1,4,7-triazacyclononane) with Ni(iPrtacn)Cl2 (iPrtacn is 1,4,7-trisisopropyl-1,4,7-triazacyclononane) affords a CrNi3 tetranuclear complex. Variable temperature and magnetization versus field measurements show a S = 9/2 ground state and an appreciable magnetic anisotropy with a negative D(9/2) value equal to -0.54 cm(-1). Magnetization studies on one single crystal using a micro-SQUID show a fast tunneling process at zero field at very low temperature.  相似文献   

15.
The reaction of the bis-chelating ligand 1,2-bis(2,2'-bipyridine-6-yl)ethane (L) with the trinuclear species of formula [Mn(3)O(O(2)CR)(6)(py)(3)](ClO(4)) (R = Me (1); R = Et (2); R = Ph (3)) has afforded the new tetranuclear mixed-valent complexes [Mn(4)O(2)(O(2)CR)(4)L(2)](ClO(4))(2) (R = Me (4); R = Et (5); R = Ph (6)) and [Mn(4)O(2)(OMe)(3)(O(2)CR)(2)L(2)(MeOH)](ClO(4))(2) (R = Me (7); R = Et (8); R = Ph (9)). Complexes 4-6 were obtained in yields of 20%, 44%, and 37%, respectively. They are mixed-valent, with an average Mn oxidation state of +2.5. Complexes 7-9 were obtained in yields of 57%, 65%, and 70%, respectively. They are also mixed-valent, but with an average Mn oxidation state of +2.75. Complexes 4 x 2THF and 9 x 3MeOH x H(2)O crystallize in the triclinic space group P1 macro and contain [Mn(4)(mu(3)-O)(2)](6+) and [Mn(4)(mu(3)-O)(2)(mu-OMe)(2)](5+) cores, respectively, the latter being a new structural type in the family of Mn(4) complexes. Reactivity studies of 4-9 have shown that 4-6 can be converted into 7-9, respectively, and vice versa. The magnetic properties of 5 and 9 have been studied by dc and ac magnetic susceptibility techniques. Complex 5 displays antiferromagnetic coupling between its Mn ions resulting in a spin ground state of S = 0. Complex 9 also displays antiferromagnetic coupling, but the resulting ground state is S = (7)/(2), as confirmed by fitting magnetization versus field data collected for 9 at low temperatures, which gave S = (7)/(2), D = -0.77 cm(-1), and g = 1.79. Complex 9 exhibits a frequency-dependent out-of-phase ac susceptibility peak, indicative of the slow magnetization relaxation that is diagnostic of single-molecule magnetism behavior.  相似文献   

16.
The syntheses, crystal structures, and magnetic properties of [Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (2), (NMe(4))[Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (3), and (NMe(4))(2)[Mn(12)O(12)(O(2)CC(6)F(5))(16)(H(2)O)(4)] (4) are reported. Complex 2 displays quasi-reversible redox couples when examined by cyclic voltammetry in CH(2)Cl(2): one-electron reductions are observed at 0.64 and 0.30 V vs ferrocene. The reaction of complex 2 with 1 and 2 equiv of NMe(4)I yields the one- and two-electron reduced analogues, 3 and 4, respectively. Complexes 2.3CH(2)Cl(2), 3.4.5CH(2)Cl(2).(1)/(2)H(2)O, and 4.6C(7)H(8) crystallize in the triclinic P, monoclinic P2/c, and monoclinic C2/c space groups, respectively. The molecular structures are all very similar, consisting of a central [Mn(IV)O(4)] cubane surrounded by a nonplanar alternating ring of eight Mn and eight mu(3)-O(2)(-) ions. Peripheral ligation is provided by 16 bridging C(6)F(5)CO(2)(-) and 4 H(2)O ligands. Bond valence sum calculations establish that the added electrons in 3 and 4 are localized on former Mn(III) ions giving trapped-valence Mn(IV)(4)Mn(III)(7)Mn(II) and Mn(IV)(4)Mn(III)(6)Mn(II)(2) anions, respectively. (19)F NMR spectroscopy in CD(2)Cl(2) shows retention of the solid-state structure upon dissolution and detrapping of the added electrons in 3 and 4 among the outer ring of Mn ions on the (19)F NMR time scale. DC studies on dried microcrystalline samples of 2, 3, and 4.2.5C(7)H(8) restrained in eicosane in the 1.80-10.0 K and 1-70 kG ranges were fit to give S = 10, D = -0.40 cm(-)(1), g = 1.87, D/g = 0.21 cm(-)(1) for 2, S = 19/2, D = -0.34 cm(-)(1), g = 2.04, D/g = 0.17 cm(-)(1) for 3, and S = 10, D = -0.29 cm(-)(1), g = 2.05, D/g = 0.14 cm(-)(1) for 4, where D is the axial zero-field splitting parameter. The clusters exhibit out-of-phase AC susceptibility signals (chi(M)' ') indicative of slow magnetization relaxation in the 6-8 K range for 2, 4-6 K range for 3, and 2-4 K range for 4; the shift to lower temperatures reflects the decreasing magnetic anisotropy upon successive reduction and, hence, the decreasing energy barrier to magnetization relaxation. Relaxation rate vs T data obtained from chi(M)' ' vs AC oscillation frequency studies down to 1.8 K were combined with rate vs T data from DC magnetization decay vs time measurements at lower temperatures to generate an Arrhenius plot from which the effective barrier (U(eff)) to magnetization reversal was obtained; the U(eff) values are 59 K for 2, 49 and 21 K for the slower- and faster-relaxing species of 3, respectively, and 25 K for 4. Hysteresis loops obtained from single-crystal magnetization vs DC field scans are typical of single-molecule magnets with the coercivities increasing with decreasing T and increasing field sweep rate and containing steps caused by the quantum tunneling of magnetization (QTM). The step separations gave D/g values of 0.22 cm(-)(1) for 2, 0.15 and 0.042 cm(-)(1) for the slower- and faster-relaxing species of 3, and 0.15 cm(-)(1) for 4.  相似文献   

17.
The reaction between 3-phenyl-1,5-bis(pyridin-2-yl)pentane-1,5-dione dioxime (pdpdH(2)) and triangular [Mn(III)(3)O(O(2)CMe)(py)(3)](ClO(4)) (1) affords [Mn(12)O(4)(O(2)CMe)(12)(pdpd)(6))](ClO(4))(4) (3). Complex 3 has a rectangular shape and consists of four [Mn(III)(3)O](7+) triangular units linked covalently by the dioximate ligands into a supramolecular [Mn(3)](4) tetramer. Solid-state dc and ac magnetic susceptibility measurements revealed that [Mn(3)](4) contains four Mn(3) single-molecule magnets (SMMs), each with an S = 6 ground state. Magnetization versus dc-field sweeps on a single crystal gave hysteresis loops below 1 K that exhibited exchange-biased quantum tunneling of magnetization steps, confirming 3 to be a supramolecular aggregate of four weakly exchange-coupled SMM units.  相似文献   

18.
First members of a new family of heterometallic Mn/Ni complexes [Mn(2)Ni(3)X(2)L(4)(LH)(2)(H(2)O)(2)] (X = Cl: 1; X = Br: 2) with the new ligand 2-{3-(2-hydroxyphenyl)-1H-pyrazol-1-yl}ethanol (H(2)L) have been synthesized, and single crystals obtained from CH(2)Cl(2) solutions have been characterized crystallographically. The molecular structures feature a quasi-linear Mn(III)-Ni(II)-Ni(II)-Ni(II)-Mn(III) core with six-coordinate metal ions, where elongated axes of all the distorted octahedral coordination polyhedra are aligned parallel and are fixed with respect to each other by intramolecular hydrogen bonds. 1 and 2 exhibit quite strong ferromagnetic exchange interactions throughout (J(Mn-Ni) ≈ 40 K (1) or 42 K (2); J(Ni-Ni) ≈ 22 K (1) or 18 K (2)) that lead to an S(tot) = 7 ground state, and a sizable uniaxial magnetoanisotropy with D(mol) values -0.55 K (1) and -0.45 K (2). These values are directly derived also from frequency- and temperature-dependent high-field EPR spectra. Slow relaxation of the magnetization at low temperatures and single-molecule magnet (SMM) behavior are evident from frequency-dependent peaks in the out-of-phase ac susceptibilities and magnetization versus dc field measurements, with significant energy barriers to spin reversal U(eff) = 27 K (1) and 22 K (2). Pronounced quantum tunnelling steps are observed in the hysteresis loops of the temperature- and scan rate-dependent magnetization data, but with the first relaxation step shifted above (1) or below (2) the zero crossing of the magnetic field, despite the very similar molecular structures. The different behavior of 1 and 2 is interpreted in terms of antiferromagnetic (1) or ferromagnetic (2) intermolecular interactions, which are discussed in view of the subtle differences of intermolecular contacts within the crystal lattice.  相似文献   

19.
Reaction of nickel(II) chloride hexahydrate with N-n-butyldiethanolamine H(2)L (3) in the presence of LiH in anhydrous THF leads to the formation of the unique octanuclear chloro-bridged nickel(II) double cubane [({Ni(II)(4)(μ(3)-OH)Cl(3)(HL)(3)}μ(2)-Cl)(2)] (4) in 57% yield. According to single crystal X-ray structure analysis, complex 4·4CH(2)Cl(2) possesses a [({Ni(4)(μ(3)-OH)(μ(3)-O)(3)(OH)(3)(N)(3)(Cl)(3)}μ(2)-Cl)(2)] core and crystallizes in the monoclinic space group P2(1)/c with a = 18.292(2), b = 19.8972(5), c = 23.295(2) ?, β = 98.408(6)°, V = 8387.3(8) ?(3), and four molecules in the unit cell. The analysis of the SQUID magnetic susceptibility data identified 4 as a weakly coupled dimer (J(1) = 14.5 K, J(2) = -0.6 K) with a ground state of S = 0, resulting from two S = 4 states of each {Ni(4)} subunits. Although complex 4 does not show an ac out-of-phase signal in a zero dc field at temperatures of 1.8 K and higher, low-temperature magnetization measurements revealed that complex 4 is a single-molecule magnet and shows hysteretic magnetization characteristics with typical temperature and sweep-rate dependencies. The eye-catching feature of complex 4 is the presence of two different blocking temperatures (0.9 K around zero field and 1.3 K at higher fields). The origin of this highly unusual behavior can be assigned to the dimer-nature of the interaction between the two S = 4 units. Furthermore STM and current imaging tunnelling spectroscopy (CITS) were performed on aggregates of 4 drop-coated on highly oriented pyrolytic graphite (HOPG) surfaces. CITS measurements show a strong contrast in the area of the nickel centers and a HOMO-LUMO gap of approximately 0.8 V.  相似文献   

20.
The reactions of [Mn12O12(O2CEt)16(H2O)4] with phenylphosphinic acid (PhHPO2H) in MeCN and MeCN/CH2Cl2 have led to isolation of [Mn22O12(O2CEt)22(O3PPh)8(H2O)8] (2) and [Mn22O12(O2CEt)20(O3PPh)8(O2PPhH)2(H2O)8]n (3), respectively, both containing PhPO3(2-) groups from in situ oxidation of PhHPO(2)(-). Complex 2 is molecular and consists of two Mn9 subunits linked by four additional Mn atoms. Complex 3 contains almost identical Mn22 units as 2, but they are linked into a one-dimensional chain structure. The Mn22 unit in both compounds is mixed-valence Mn(III)18, Mn(II)4. Solid-state, variable-temperature dc magnetic susceptibility and magnetization measurements were performed on vacuum-dried samples of 2 and 3, indicating dominant antiferromagnetic interactions. A good fit of low-temperature magnetization data for 2 could not be obtained because of problems associated with low-lying excited states, as expected for a high nuclearity complex containing Mn(II) atoms. An approximate fit using only data collected in small applied fields indicated an S = 7 or 8 ground state for 2. Solid-state ac susceptibility data established that the true ground state of 2 is S = 7 and that the connected Mn22 units of 3 are ferromagnetically coupled. Both 2 and 3 displayed weak out-of-phase ac signals indicative of slow magnetization relaxation. Single-crystal magnetization versus applied dc field scans exhibited hysteresis loops for both compounds, establishing them as new single-molecule and single-chain magnets, respectively. Complex 2 also showed steps in its hysteresis loops characteristic of quantum tunneling of magnetization, the highest nuclearity molecule to show such QTM steps. Arrhenius plots constructed from dc magnetization versus time decay plots gave effective barriers to magnetization relaxation (U(eff)) of 6 and 11 cm(-1) for 2 and 3, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号