首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The (borole)iodide complex [(η5-C4H4BPh)RhI]4 reacts with the carborane anion [Carb′] (Carb′ = 9-SMe2-7,8-C2B9H10) giving (Carb′)Rh(η5-C4H4BPh) (2). Reactions of 2 with dicationic fragments [LM]2+ afford the μ-borole triple-decker complexes [(Carb′)Rh(μ-η55-C4H4BPh)ML]2+ [LM = CpIr (4), (Carb′)Rh (7)] or the arene-type complexes [(Carb′)Rh(μ-η56-C4H4BPh)ML]2+ [LM = CpRh (3), (Carb′)Ir (8)]. The structure of 4(BF4)2 was determined by X-ray diffraction.  相似文献   

2.
Triple-decker complexes with a bridging borole ligand (C4H4BPh)Rh(μ-C4H4BPh)ML (ML = RuCp, 2a; RuCp, 2b; FeCp, 3; Co(C4Me4), 4; Ir(cod), 5) were synthesized by stacking reactions of [Rh(C4H4BPh)2] (1) with cationic [ML]+ fragments. The structures of 2a,b and (C4H4BPh)Rh(μ-C4H4BPh)Rh(C4H4BPh) (6) were determined by X-ray diffraction.  相似文献   

3.
New dicationic triple-decker complexes with a bridging boratabenzene ligand [Cp*Fe(μ-η:η-C5H5BMe)ML]X2 (ML=CoCp*, 6(CF3SO3)2; RhCp, 7(BF4)2; IrCp, 8(CF3SO3)2; Ru(η-C6H6), 9(CF3SO3)2; Ru(η-C6H3Me3-1,3,5), 10(CF3SO3)2; Ru(η-C6Me6), 11(CF3SO3)2) were synthesized by stacking reactions of Cp*Fe(η-C5H5BMe) (2) with the corresponding half-sandwich fragments [ML]2+. The structure of 10(CF3SO3)2 was determined by X-ray diffraction study.  相似文献   

4.
The ability of [PtX2(Me2phen)] (Me2phen = 2,9-dimethyl-1,10-phenanthroline, X = Cl, Br, I) to act as olefin scavengers, easily giving stable trigonal bipyramidal five-coordinated platinum species [PtX2(Me2phen)(η2-olefin)], has been checked toward [(C5Me4CH2CH2CHCH2)Ir(Me)(CO)(Ph)], a cyclopentadienyl complex containing an olefinic function introduced by ring methyl activation in the pentamethylcyclopentadienyl iridium(III) complex [(C5Me5)Ir(Me)(CO)(Ph)]. The reaction of [PtI2(Me2phen)] with [(C5Me4CH2CH2CHCH2)Ir(Me)(CO)(Ph)] results in the formation of the heterometallic binuclear complex [PtI2(Me2phen){(C5Me4CH2CH2CHCH2)Ir(Me)(CO)(Ph)}] which is stable and has been completely characterized by elemental analysis, 1H, 13C, and 195Pt NMR spectroscopy.  相似文献   

5.
The synthesis, spectroscopic, and crystal structures of three heteroleptic thioether/halide platinum(II) (Pt(II)) complexes of the general formula [Pt(9S3)X2] (9S3=1,4,7-trithiacyclononane, X=Cl, Br, I) are presented. All three 9S3/dihalo complexes form very similar structures in which the Pt(II) center is surrounded by a cis arrangement of two halides and two sulfur atoms from the 9S3 ligand. The third sulfur from the 9S3 forms a long distance interaction with the Pt center resulting in an elongated square pyramidal structure with a S2X2+S1 coordination geometry. The distances between the Pt(II) center and axial sulfur shorten with larger halide ions (Cl=3.260(3) Å>Br=3.243(2) Å>I=3.207(2) Å). These distances are consistent with the halides functioning as π donor ligands, and their Pt---S axial distances fall intermediate between Pt(II) thioether complexes involving π acceptor and σ donor ligands. The 195Pt NMR chemical shift values follow a similar trend with an increased shielding of the platinum ion with larger halide ions. The 9S3 ligand is fluxional in all of these complexes, producing a single carbon resonance. Additionally, a related series of homoleptic crown thioether complexes have been studied using 195Pt NMR, and there is a strong correlation between the chemical shift and complex structure. Homoleptic crown thioethers show the anticipated upfield chemical shifts with increasing number of coordinated sulfurs. Complexes containing four coordinated sulfur donors have chemical shifts that fall in the range of −4000 to −4800 ppm while a value near −5900 ppm is indicative of five coordinated sulfurs. However, for S4 crown thioether complexes, differences in the stereochemical orientation of lone pair electrons on the sulfur donors can greatly influence the observed 195Pt NMR chemical shifts, often by several hundred ppm.  相似文献   

6.
The reductive reactivity of the (BPh4)1− ligand in pentamethylcyclopentadienyl [(C5Me5)2U][(μ-η21-Ph)2BPh2] (1) was compared with that of the tetramethyl analog, [(C5Me4H)2U][(μ-η61-Ph)(μ-η11-Ph)BPh2] (2) using PhSSPh as a probe to determine if the mode of (BPh4)1− bonding affected the reduction. Both complexes act as two-electron reductants to form (C5Me4R)2U(SPh)2 [R = Me, 3; H, 4], but only in the R = H case could the product be crystallographically characterized. An improved synthesis of 1 from [(C5Me5)2UH]2 (5) and [Et3NH][BPh4] is also reported as well as its reaction with MeCN that provides another route to the unusual, parallel-ring, uranium metallocene [(C5Me5)2U(NCMe)5][BPh4]2 (6).  相似文献   

7.
The selective synthesis of heteroleptic (heteronuclear) sandwich-type lanthanide phthalocyanines has been accomplished. Double-decker complexes BuPcLnPc, and BuPcLnPcCl (Ln = Lu, Eu; BuPc = 2,3,9,10,16,17,23,24-octabutylphthalocyaninate; Pc = phthalocyaninate, ClPc = 2,3,9,10,16,17,23,24-octachlorophthalocyaninate) were obtained in good yields by a direct interaction of metal-free ligand BuPcH2 with the monophthalocyanines PcLnOAc or ClPcLnOAc. Heteronuclear triple-decker phthalocyanines PcEuRPcLuRPc, ClPcEuRPcLuRPc and BuPcEuRPcLuRPc (RPc = BuPc, tBuPc; tBuPc = 2(3),9(10),16(17),23(24)-tetra-tert-butylphthalocyaninate) were obtained from the corresponding mono-(PcEuOAc, ClPcEuOAc, BuPcEuOAc) and bisphthalocyanines (RPc2Lu) under similar conditions.  相似文献   

8.
Reactions of [Pt2(μ-S)2(PPh3)4] with Ph3PbCl, Ph2PbI2, Ph2PbBr2 and Me3PbOAc result in the formation of bright yellow to orange solutions containing the cations [Pt2(μ-S)2(PPh3)4PbR3]+ (R3 = Ph3, Ph2I, Ph2Br, Me3) isolated as PF6 or BPh4 salts. In the case of the Me3Pb and Et3Pb systems, a prolonged reaction time results in formation of the alkylated species [Pt2(μ-S)(μ-SR)(PPh3)4]+ (R = Me, Et). X-ray structure determinations on [Pt2(μ-S)2(PPh3)4PbMe3]PF6 and [Pt2(μ-S)2(PPh3)4PbPh2I]PF6 have been carried out, revealing different coordination modes. In the Me3Pb complex, the (four-coordinate) lead atom binds to a single sulfur atom, while in the Ph2PbI adduct coordination of both sulfurs results in a five-coordinate lead centre. These differences are related to the electron density on the lead centre, and indicate that the interaction of the heterometal centre with the {Pt2S2} metalloligand core can be tuned by variation of the heteroatom substituents. The species [Pt2(μ-S)2(PPh3)4PbR3]+ display differing fragmentation pathways in their ESI mass spectra, following initial loss of PPh3 in all cases; for R = Ph, loss of PbPh2 occurs, yielding [Pt2(μ-S)2(PPh3)3Ph]+, while for R = Me, reductive elimination of ethane gives [Pt2(μ-S)2(PPh3)3PbMe]+, which is followed by loss of CH4.  相似文献   

9.
Compound trans-PtBr2(C2H4)(NHEt2) (1) has been synthesized by Et2NH addition to K[PtBr3(C2H4)] and structurally characterized. Its isomer cis-PtBr2(C2H4)(NHEt2) (3) has been obtained from 1 by photolytic dissociation of ethylene, generating the dinuclear trans-[PtBr2(NHEt2)]2 intermediate (2), followed by thermal re-addition of C2H4, but only in low yields. The addition of further Et2NH to 1 in either dichloromethane or acetone yields the zwitterionic complex trans-Pt(−)Br2(NHEt2)(CH2CH2N(+)HEt2) (4) within the time of mixing in an equilibrated process, which shifts toward the product at lower temperatures (ΔH° = −6.8 ± 0.5 kcal/mol, ΔS° = 14.0 ± 2.0 e.u., from a variable temperature IR study). 1H NMR shows that free Et2NH exchanges rapidly with H-bonded amine in a 4·NHEt2 adduct, slowly with the coordinated Et2NH in 1, and not at all (on the NMR time scale) with Pt-NHEt2 or -CH2CH2N(+)HEt2 in 4. No evidence was obtained for deprotonation of 4 to yield an aminoethyl derivative trans-[PtBr2(NHEt2)(CH2CH2NEt2)] (5), except as an intermediate in the averaging of the diasteretopic methylene protons of the CH2CH2N(+)HEt2 ligand of 4 in the higher polarity acetone solvent. Computational work by DFT attributes this phenomenon to more facile ion pair dissociation of 5·Et2NH2+, obtained from 4·Et2NH, facilitating inversion at the N atom. Complex 4 is the sole observable product initially but slow decomposition occurs in both solvents, though in different ways, without observable generation of NEt3. Addition of TfOH to equilibrated solutions of 4, 1 and excess Et2NH leads to partial protonolysis to yield NEt3 but also regenerates 1 through a shift of the equilibrium via protonation of free Et2NH. The DFT calculations reveal also a more favourable coordination (stronger Pt-N bond) of Et2NH relative to PhNH2 to the PtII center, but the barriers of the nucleophilic additions of Et2NH to the C2H4 ligand in 1 and of PhNH2 to trans-PtBr2(C2H4)(PhNH2) (1a) are predicted to be essentially identical for the two systems.  相似文献   

10.
The divalent europium bis-fluorenyl complex (C13H9)2Eu(THF)2 was synthesized by the metathesis reaction of EuI2(THF)2 with two equivalents of fluorenylpotassium and by the protolytic substitution of the naphthalene ligand in the (C10H8)Eu(THF)2 complex using the reaction with fluorene. According to X-ray diffraction data, the complex displays a skewed sandwich structure, in which one fluorenyl ligand is η5-coordinated to the metal atom, whereas the η3-coordination mode makes a great contribution to the coordination of another ligand. The (C5Me4H)2YbI(THF) complex was synthesized by the reaction of YbI3(THF)2 with two equivalents of (C5Me4H)K. The structure of the complex was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 530–534, March, 2008.  相似文献   

11.
The preparation and properties of complexes of the general formulae [Rh(TFB)(diolefin)]ClO4, [Rh(TFB)(arene)]ClO4 and [Rh(TFB)L2]ClO4, (TFB = tetrafluorobenzobarrelene, L = dimethylsulfoxide and tetrahydrothiophen) are described. The crystal structures of the arene complexes (arene = C6Me6, C6H3Me3 and C6H4Me2) have been solved by X-ray methods. The three compounds crystallize in quite similar lattices: R3c, a = b = 27.122, 26.233, 25.731 and c = 17.079, 16.388, 16.256 Å, respectively. δR-plots for about 2000 reflections show the agreement in the refinements carried out up to R-values of 5%, 5% and 4% respectively. The Rh atom is coordinated to the double bonds of the TFB and to the arene ring in all three compounds, but the deviation from planarity of the arene and its relative position with respect to the TFB moiety varies.  相似文献   

12.
All the steps of the proposed technique, from the synthesis of single-source precursors to the preparation of CoPd and CoPt nanoalloys, are described. The double complex salts (DCS) [M(NH3)4][Co(C2O4)2(H2O)2]·2H2O (M = Pd, Pt), which were synthesized by mixing solutions containing [M(NH3)4]2+ cations and [Co(C2O4)2(H2O)2]2− anions, have been used as precursors. The salts obtained were characterized by IR spectroscopy, thermal analysis, XRD and single crystal X-ray diffraction. The prepared compounds crystallize in the monoclinic (space group I2/m, M = Pd) and orthorhombic (space group I222, M = Pt) crystal systems. Thermal decomposition of the salts in helium or hydrogen atmosphere at 200-600 °C results in the formation of nanoalloys powders (random solid solution Co0.50Pd0.50 and chemically ordered CoPt). The size of the bimetallic particles varied from 5 to 20 nm. Order-disorder structural transformations in Co0.50Pt0.50 nanoalloys were studied. The magnetic properties of both chemically disordered Co0.50Pd0.50 and ordered CoPt clusters have also been measured.  相似文献   

13.
The reaction of [Cp′Cr(CO)2(μ-SBu)]2 (1) (Cp′ = MeC5H4) with (PPh3)2Pt(PhCCPh) gives Cp′Cr(CO)2(μ-SBu)Pt(PPh3)2 (2) which could be regarded as a product of the substitution of acetylene ligand at platinum by a monomeric chromium–thiolate fragment. According to the X-ray diffraction analysis 2 contains single Cr–Pt (2.7538(15)) and Pt–S (2.294(2) Å) bonds while Cr–S bond (2.274(3) Å) is shortened in comparison with ordinary Cr–S bonds (2.4107(4)–2.4311(4) Å) in 1. The bonding between Cr–S fragment and platinum atom is similar to the olefine coordination in their platinum complexes.  相似文献   

14.
The reactivity of [Pt2(μ-S)2(PPh3)4] towards [RuCl26-arene)]2 (arene=C6H6, C6Me6, p-MeC6H4Pri=p-cymene), [OsCl26-p-cymene)]2 and [MCl25-C5Me5)]2 (M=Rh, Ir) have been probed using electrospray ionisation mass spectrometry. In all cases, dicationic products of the type [Pt2(μ-S)2(PPh3)4ML]2+ (L=π-hydrocarbon ligand) are observed, and a number of complexes have been prepared on the synthetic scale, isolated as their BPh4 or PF6 salts, and fully characterised. A single-crystal X-ray structure determination on the Ru p-cymene derivative confirms the presence of a pseudo-five-coordinate Ru centre. This resists addition of small donor ligands such as CO and pyridine. The reaction of [Pt2(μ-S)2(PPh3)4] with RuClCp(PPh3)2 (Cp=η5-C5H5) gives [Pt2(μ-S)2(PPh3)4RuCp]+. In addition, the reaction of [Pt2(μ-S)2(PPh3)4] with the related carbonyl complex [RuCl2(CO)3]2, monitored by electrospray mass spectrometry, gives [Pt2(μ-S)2(PPh3)4Ru(CO)3Cl]+.  相似文献   

15.
[Cp4Fe4(CO)4] (1) reacts with p-BrC6H4Li and MeOH in sequence to afford the functionalized cluster [Cp3Fe4(CO)4(C5H4-p-C6H4Br)] (2), while the reaction of 2 with n-BuLi and MeOH produces [Cp2Fe4(CO)4(C5H4Bu)(C5H4-p-C6H4Br)] (3). The double cluster [Cp3Fe4(CO)4(C5H4)]2(p-C6H4) (4) has been prepared by treatment of [Cp4Fe4(CO)4] with p-C6H4Li2 and MeOH in sequence. The electrochemistry of 2 and 4, as well as the crystal structure of 4 have been investigated.  相似文献   

16.
A formal aza-Michael addition to tropone by way of tricarbonyl(tropone)iron and/or the tetrafluoroborate salt formed via protonation of the complex is reported. Tricarbonyl(tropone)iron smoothly undergoes the direct aza-Michael reaction with unhindered aliphatic amines under solvent free conditions in good yields. Meanwhile, the known cationic complex [(C7H7O)Fe(CO)3]BF4 (whose reaction with a small number of nucleophiles was previously reported) undergoes addition with an even broader array of amine nucleophiles. Finally, it was discovered that protecting the aza-Michael adduct as a carbamate was necessary for oxidative demetallation of the complex.  相似文献   

17.
The new dianionic ligand [Na]2[C5H4CO2(CH2)2NTs] (1) having an alkoxycarbonyl and an amide group in the same side chain has been prepared by a single step, high yield procedure. The synthesis of the related rhodium complexes [Rh{η5-C5H4CO2(CH2)2N(H)Ts}(NBD)] (3) and [Rh{η5-C5H4CO2 (CH2)2N(Me)Ts}(NBD)] (4) is reported as well as their X-ray molecular structures.  相似文献   

18.
Oxidative addition reactions of Cl2CPR (R = 2,4,6-tris(trifluoromethyl)phenyl (Ar) or 2,6-bis(trifluoromethyl)phenyl (Ar′) with Pt(PPh3)4 yield the cis and trans (at platinum) complexes [PtCl(ClCPAr)(PPh3)2] and [PtCl(ClCPAr′)(PPh3)2]. All starting materials and intermediates have been characterised by NMR spectroscopy. The crystal and molecular structures of the trans-platinum complexes have been determined by single-crystal X-ray diffraction at low temperature.  相似文献   

19.
The complex [Pt(9S3)(SbPh3)(Ph)](PF6) forms directly from [Pt(9S3)(SbPh3)2](PF6)2 during the room temperature crystallization of the latter in nitromethane. The crystal structure shows a five-coordinate Pt(II) center containing the tridentate thiacrown ligand, a Sb donor from the triphenylstibine ligand, and a σ-coordinating phenyl group. The phenyl group forms via Sb-C bond cleavage from one of the SbPh3 ligands in the bis complex.  相似文献   

20.
A series of heterodimetallic complexes of general formula (C5R5)M(μ-CO)3RuC5Me5 (M = Cr, Mo, W; R = Me, Et) has been prepared in good yields by the reaction of [C5R5M(CO)3] with [C5Me5Ru(CH3CN)3]+. (C5Me4Et)W(μ-CO)3Ru(C5Me5) was characterized by a crystal structure determination. The W---Ru bond length of 2.41 Å is consistent with the formulation of a metal-metal triple bond, while the unsymmetrical bonding mode of the three bridging carbonyl groups reflects the inherent non-equivalence of the two different C5R5M-units. Using [CpRu(CH3CN)3]+ or [CpRu(CO)2(CH3CN)]+ as the cationic precursor leads to the formation of dimetallic species (C5R5)M(CO)5RuC5H5 with both bridging and terminal carbonyl groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号