首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of pyrazole (Hpz) and pyrazolate (pz) Au(I) complexes of types [Au(Hpz2R(n))(PPh3)]+ (I), [Au(Hpz2R(n))2]+ (II), [Au(μ-pzR(n))]3 (III), [Au(pzR(n)/2R(n))(PPh3)] (IV), [AuCl(HpzR(n)/2R(n))] (V) and [(PPh3)Au(μ-pzR(n))Au(PPh3)]+ (VI), R(n) and 2R(n) represent C6H4OCnH2n+1 substituents at the 3- or 3- and 5-positions of the heterocyclic ring, respectively, have been shown to be luminescent in the solid state at 77 K, independently of the presence or not of inter-metallic Au-Au interactions. The emission spectra of all complexes consist of structured bands in the region 395-500 nm, attributed to ligand-to-metal charge transfer (LMCT) transitions involving the Hpz or pz ligands, the pattern of bands of compounds being related with the molecular structure and/or the nature of the ligands. The thermal behaviour of several complexes of the types III, IV and V containing long-chain substituents (n ? 12) was examined by polarising light optical microscopy (POM). The derivative [AuCl(HpzR(12))] was proved to have liquid crystal properties exhibiting a mesophase SmA but the remaining complexes were not liquid crystal materials. This complex is one of the scarce examples of Au(I) derivatives exhibiting both liquid crystal and luminescent properties.  相似文献   

2.
Chiral “P-N-P” ligands, (C20H12O2)PN(R)PY2 [R = CHMe2, Y = C6H5 (1), OC6H5 (2), OC6H4-4-Me (3), OC6H4-4-OMe (4) or OC6H4-4-tBu (5)] bearing the axially chiral 1,1′-binaphthyl-2,2′-dioxy moiety have been synthesised. Palladium allyl chemistry of two of these chiral ligands (1 and 2) has been investigated. The structures of isomeric η3-allyl palladium complexes, (R′ = Me or Ph; Y = C6H5 or OC6H5) have been elucidated by high field two-dimensional NMR spectroscopy. The solid state structure of [Pd(η3-1,3-Ph2-C3H3){κ2-(racemic)-(C20H12O2)PN(CHMe2)PPh2}](PF6) has been determined by X-ray crystallography. Preliminary investigations show that the diphosphazanes, 1 and 2 function as efficient auxiliary ligands for catalytic allylic alkylation but give rise to only moderate levels of enantiomeric excess.  相似文献   

3.
Chloro phosphite complexes RuClTpL(PPh3) (1a, 1b) [L = P(OEt)3, PPh(OEt)2] and RuClTp[P(OEt)3]2 (1c) [Tp = hydridotris(pyrazolyl)borate] were prepared by allowing RuClTp(PPh3)2 to react with an excess of phosphite. Treatment of the chloro complexes 1 with NaBH4 in ethanol yielded the hydride RuHTpL(PPh3) (2a, 2b) and RuHTp[P(OEt)3]2 (2c) derivatives. Protonation reaction of 2 with Brønsted acids was studied and led to thermally unstable (above 10 °C) dihydrogen [Ru(η2- H2)TpL(PPh3)]+ (3a, 3b) and [Ru(η2-H2)Tp{P(OEt)3}2]+ (3c) complexes. The presence of the η2-H2 ligand is indicated by short T1 min values and JHD measurements of the partially deuterated derivatives. Aquo [RuTp(H2O)L(PPh3)]BPh4 (4), carbonyl [RuTp(CO)L(PPh3)]BPh4 (5), and nitrile [RuTp(CH3CN)L(PPh3)]BPh4 (6) derivatives [L = P(OEt)3] were prepared by substituting H2 in the η2-H2 derivatives 3. Vinylidene [RuTp{CC(H)R}L(PPh3)]BPh4 (7, 8) (R = Ph, tBu) and allenylidene [RuTp(CCCR1R2)L(PPh3)]BPh4 (9-11) complexes (R1 = R2 = Ph, R1 = Ph R2 = Me) were also prepared by allowing dihydrogen complexes 3 to react with the appropriate HCCR and HCCC(OH)R1R2 alkynes. Deprotonation of vinylidene complexes 7, 8 with NEt3 was studied and led to acetylide Ru(CCR)TpL(PPh3) (12, 13) derivatives. The trichlorostannyl Ru(SnCl3)TpL(PPh3) (14) compound was also prepared by allowing the chloro complex RuClTpL(PPh3) to react with SnCl2 · 2H2O in CH2Cl2.  相似文献   

4.
Reaction of Ph3PCHCOC6H4Me (L), with HgX2 and CdCl2·H2O in methanol with equimolar ratios give binuclear complexes of the type [MX(μ-X){CH(PPh3)C(O)C6H4Me}]2 (M = Hg; X = Cl (1), Br (2), I (3), M = Cd; Cl(4)). The bridge-splitting reaction of binuclear complexes [MX(μ-X){CH(PPh3)C(O)C6H4Me}]2 by dimethyl sulfoxide (DMSO) yields the mononuclear complexes [MX2{CH(PPh3)C(O)C6H4Me}(OSMe2)] (M = Hg; X = Cl (5), Br (6), I (7), M = Cd; Cl (8)). The characterization of these complexes was carried out by elemental analysis and FT-IR, 1H, 31P, and 13C NMR spectroscopies. C-coordination of ylide and O-coordination of DMSO are demonstrated by single-crystal X-ray analysis of mononuclear complex of [HgBr2{CH(PPh3)C(O)C6H4Me}(OSMe2)] (6). Complex 6 is monomeric with tetrahedral geometry around the metal ion.  相似文献   

5.
A series of mononuclear and binuclear cyclometalated platinum(II) complexes containing new terdentate meta-bis(2-pyridoxy)benzene ligands: 3,5-bis(2-pyridoxy)toluene (L1H) and 3,5-bis(2-pyridoxy)-2-dodecylbenzene (L2H): [Pt(L1)Cl] (1), [Pt(L2)Cl] (2), [Pt(L1)(CH3CN)](ClO4) (3), {[Pt(L1)]2(μ-dppm)}(ClO4)2 (4), {[Pt(L2)]2(μ-dppm)}(ClO4)2 (5), {[Pt(L1)]2(μ-pyrazole)}(ClO4) (6), {[Pt(L2)]2(μ-pyrazole)}(ClO4) (7), {[Pt(L1)]2(μ-imidazole)}(ClO4) (8) and {[Pt(L2)]2(μ-imidazole)}(ClO4) (9), have been synthesized and characterized. These ligands are coordinated to platinum(II) in a “pincer”-like manner and the presence of pyridyl donors enhances the availability of the ligand π orbitals for electronic transition. Spectroscopic properties of these cyclometalated complexes were studied. While the non-coplanar nature of the ligands hinders ligand-ligand and metal-metal interactions in these cyclometalated complexes, the presence of long hydrocarbon side chain on ligand L2H seems to alleviate such hindrance. Intermolecular π-π, and possibly Pt-Pt interactions were observed in complex 2 at high concentration.  相似文献   

6.
The polyphosphazene {[NP(O2C12H8)]0.5[NP(OC6H4Br)2]0.5}n (1) [(O2C12H8) = 2,2′-dioxy-1,1′-biphenyl] that, as an strictly alternating copolymer, can be considered nearly as the homopolymer [NP(O2C12H8)NP(OC6H4Br)2]n, was reacted first with tBuLi in THF at −78 °C to give the intermediate [NP(O2C12H8)NP(OC6H4Li)2]n (2) and subsequently with the chlorosilanes SiMe3Cl and SiMe2(C6H5)Cl or with the chlorostannane SnMe3Cl, to obtain the new polyphosphazenes {(NP[O2C12H8])0.5[NP(OC6H4SiMe3)2]0.5−x[NP(OC6H5)(OC6H4SiMe3)]x}n (3a) (x = 0.15-0.5), {(NP[O2C12H8])0.5[N(POC6H4SiMe2Ph)2]0.2[NP(OC6H5)(OC6H4SiMe2Ph)]0.3}n (3b), and {(NP[O2C12H8])0.5[NP(OC6H5)(OC6H4SnMe3)]0.5}n (4), having a very regular distribution of the silicon or tin organometallic sites along the chains. The pyrolysis of the polymers in air at 800 °C gave microcrystalline residues (characterized by IR, XRD, SEM and TEM-EDXA) consisting on phases of SiO2 · P2O5 · P2O7.9 · SiP2O7, or, in the case of the tin derivative, almost pure SnP2O7. The results indicate that, while part of the Si content is lost during the pyrolysis, almost all the tin in the original polymer was incorporated to the final residue.  相似文献   

7.
The syntheses of four compounds, obtained by the reaction of methylpyruvate thiosemicarbazone (Hmpt) and its methyl (Me-Hmpt) and allyl (Allyl-Hmpt) derivatives with bis(triphenylphosphine)copper(I) acetate, are reported. The compounds [Cu(PPh3)2(ptc)(Hptc)]·H2O (1), [Cu(PPh3)2(Me-ptc)] (2), [Cu2(PPh3)2μ-S(Me-pt)μ-S(Me-ptc)]·H2O (3) and [Cu(PPh3)2(Allyl-ptc)] (4) [H2pt = pyruvic acid thiosemicarbazone and Hptc = cyclized pyruvic acid thiosemicarbazone, Me = methyl and Allyl are radical substituents on the amino nitrogen] were characterized by elemental analysis, IR, 1H NMR, and by X-ray crystallography. Compound 3 was also studied by EPR because of the presence in the compound of two copper atoms in two different oxidation states. During the complexation reaction, the thiosemicarbazone ligands tend to undergo a cyclization reaction that leads to the formation of a six-member heterocyclic ring. All four compounds present the [Cu(PPh3)2]+ fragment and constant but different coordination situations. Compound 1 contains two cyclic ligand molecules, one protonated and the other deprotonated, bound as monodentate through the sulfur. Compounds 2 and 4 present a single deprotonated cyclic SN bidentate ligand molecule, while compound 3 contains copper(I) and copper(II), and two ligand molecules, one of which is linear and behaves as SNO tridentate and the other is cyclic and behaves as bridging μSN.  相似文献   

8.
Four d10-metal coordination polymers based on the 2,4,5-tri(4-pyridyl)-imidazole ligand (Htpim), {[Zn2(Htpim)4Cl4] · 8H2O}n (1), {[Cd(tpim)2(H2O)2] · 4CH3OH}n (2), {[Cu2(Htpim)(PPh3)2I2] · CH3CN}n (3) and {[Ag(Htpim)](NO3) · CH2Cl2}n (4), have been synthesized and characterized by elemental analyses, IR, thermogravimetric and X-ray structural analyses. Both complexes 1 and 2 show one dimensional ribbon-like structures. Via intermolecular hydrogen bonds, a 2D supramolecular network and 3D framework are formed for 1 and 2, respectively. Complex 3 shows a 1D zigzag chain with a CuI2Cu rhomboid dimer. Complex 4 shows a 1D ladder-like polymer with two different metallacycles. The luminescent properties of all the complexes have been studied in the solid state.  相似文献   

9.
The complex [(η5-C5H5)Ru(PPh3)2Cl] (1) reacts with several arylazoimidazole (RaaiR′) ligands, viz., 2-(phenylazo)imidazole (Phai-H), 1-methyl-2-(phenylazo)imidazole (Phai-Me), 1-ethyl-2-(phenylazo)imidazole (Phai-Et), 2-(tolylazo)imidazole (Tai-H), 1-methyl-2-(tolylazo)imidazole (Tai-Me) and 1-ethyl-2-(tolylazo)imidazole (Tai-Et), gave complexes of the type [(η5-C5H5)Ru(PPh3)(RaaiR′)]+ {where R, R′ = H (2), R = H, R′ = CH3 (3), R = H, R′ = C2H5 (4), R = CH3, R′ = H (5), R, R′ = CH3 (6), R = CH3, R′ = C2H5 (7)}. The complex [(η5-C9H7)Ru(PPh3)2(CH3CN)]+ (8) undergoes reactions with a series of N,N-donor azo ligands in methanol yielding complexes of the type [(η5-C9H7) Ru(PPh3)(RaaiR′)]+ {where R, R′ = H (9), R = H, R′ = CH3 (10), R = CH3, R′ = H (11), R = CH3, R′ = C2H5 (12)}, respectively. These complexes were characterized by FT IR and FT NMR spectroscopy as well as by analytical data. The molecular structure of the complex [(η5-C5H5)Ru(PPh3)(C6H5-NN-C3H3N2)]+ (2) was established by single crystal X-ray diffraction study.  相似文献   

10.
Five new copper(I)/silver(I) complexes containing 2-aminopyridine, [Cu(μ-Cl)(2-Apy)(PPh3)]2(1), [Ag(μ-Cl)(2-Apy)(PPh3)]2(2), [Ag(μ-Br)(2-Apy)PPh3)]2(3), [Ag(μ-ONO2)(2-Apy)(PPh3)]2(4), [Ag(μ-ONO2)(2-Apy)(AsPh3)]2(5) have been synthesised for the first time. Complexes 15 are obtained by the reactions of MX (MX = CuCl for 1; M = Ag for 2–5; X = Cl, Br for 23; X = NO3 for 4–5) with the monodentate ligands EPh3 (E = P for 14; E = As for 5) and 2-Apy in the molar ratio of 1:1:2 in the mixed solvent of CH2Cl2 and MeOH. Complexes 15 are characterised by IR and X-ray diffraction. In 15, chloride, bromide and nitrate ions bridge two metal atoms to form dinuclear complexes containing the parallelogram cores M2X2 (M = Cu, Ag).  相似文献   

11.
Reactivity of the ruthenium complexes [Ru(κ3-tptz)(PPh3)Cl2] (1) and [Ru(κ3-tpy)(PPh3)Cl2] (2) [tptz = 2,4,6-tris(2-pyridyl)-1,3,5-triazine; tpy = 2,2′:6′,2″-terpyridine] with several α-amino acids [glycine (gly); leucine (leu); isoleucine (isoleu); valine (val); tyrosine (tyr); proline (pro) and phenylalanine (phe)] have been investigated. Cationic complexes with the general formulations [Ru(κ3-L)(κ2-L″)(PPh3)]+ (L = tptz or tpy; L″ = gly, leu, isoleu, val, tyr, pro, and phe] have been isolated as tetrafluoroborate salts. The resulting complexes have been thoroughly characterized by analytical, spectral and electrochemical studies. Molecular structures of the representative complexes [Ru(κ3-tptz)(val)(PPh3)]BF4 (6), [Ru(κ3-tpy)(leu)(PPh3)]BF4 (10) and [Ru(κ3-tpy)(tyr)(PPh3)]BF4 (13) have been determined crystallographically. The complexes [Ru(κ3-tptz)(leu)(PPh3)]BF4 (4), [Ru(κ3-tptz)(val)(PPh3)]BF4 (6), [Ru(κ3-tpy)(leu)(PPh3)]BF4 (10) [Ru(κ3-tpy)(tyr)(PPh3)] BF4·3H2O (13) exhibited DNA binding behavior and acted as mild Topo II inhibitors (10-40%). The complexes also inhibited heme polymerase activity of the malarial parasite Plasmodium yoelii lysate.  相似文献   

12.
Novel rhenium complexes containing the maltolate (mal) or kojate (koj) anions as chelating ligands have been synthesized: [ReOCl(mal)2] (1), [ReOCl2(mal)(PPh3)] (2), [ReOBr2(mal)(PPh3)] (3), [ReOCl2(koj)(PPh3)] (4) and [ReOBr2(koj)(PPh3)] (5). The products have been characterized by FTIR, 1H, 13C, and 31P NMR spectroscopies and elemental analysis. The crystal and molecular structures of all complexes were determined. Complex 1 crystallizes monoclinic, space group C2/c, Z = 8. It contains two O,O′-bidentate maltolate ligands and one chloro ligand at the (ReO)3+ unit, so that a distorted octahedral geometry is adopted by the six-coordinated rhenium(V) center. The chloro ligand occupies a cis position to the oxo ligand. Complexes 2 and 3 are isostructural and crystallize orthorhombic, space group Pbca and Z = 8. The isostructural complexes 4 and 5 crystallize monoclinic, space group P21/n and Z = 4. In complexes 25, the (ReO)3+ unit is coordinated by a monoanionic O,O-bidentate unit of the maltolate (2 and 3) or kojate (4 and 5) ligand, one triphenylphosphine and two halogeno ligands (Cl in 2 and 4; Br in 3 and 5), with the rhenium(V) center in a distorted octahedral environment. The halide ligands are in cis positions to each other.  相似文献   

13.
Bis(dichlorosilyl)methanes 1 undergo the two kind reactions of a double hydrosilylation and a dehydrogenative double silylation with alkynes 2 such as acetylene and activated phenyl-substituted acetylenes in the presence of Speier’s catalyst to give 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes 4 as cyclic products, respectively, depending upon the molecular structures of both bis(dichlorosilyl)methanes (1) and alkynes (2). Simple bis(dichlorosilyl)methane (1a) reacted with alkynes [R1-CC-R2: R1 = H, R2 = H (2a), Ph (2b); R1 = R2 = Ph (2c)] at 80 °C to afford 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 as the double hydrosilylation products in fair to good yields (33-84%). Among these reactions, the reaction with 2c gave a trans-4,5-diphenyl-1,1,3,3-tetrachloro-1,3-disilacyclopentane 3ac in the highest yield (84%). When a variety of bis(dichlorosilyl)(silyl)methanes [(MenCl3 − nSi)CH(SiHCl2)2: n = 0 (1b), 1 (1c), 2 (1d), 3 (1e)] were applied in the reaction with alkyne (2c) under the same reaction conditions. The double hydrosilylation products, 2-silyl-1,1,3,3-tetrachloro-1,3-disilacyclopentanes (3), were obtained in fair to excellent yields (38-98%). The yields of compound 3 deceased as follows: n = 1 > 2 > 3 > 0. The reaction of alkynes (2a-c) with 1c under the same conditions gave one of two type products of 1,1,3,3-tetrachloro-1,3-disilacyclopentanes 3 and 1,1,3,3-tetrachloro-1,3-disilacyclopent-4-enes (4): simple alkyne 2a and terminal 2b gave the latter products 4ca and 4cb in 91% and 57% yields, respectively, while internal alkyne 2c afforded the former cyclic products 3cc with trans form between two phenyl groups at the 3- and 4-carbon atoms in 98% yield, respectively. Among platinum compounds such as Speier’s catalyst, PtCl2(PEt3)2, Pt(PPh3)2(C2H4), Pt(PPh3)4, Pt[ViMeSiO]4, and Pt/C, Speier’s catalyst was the best catalyst for such silylation reactions.  相似文献   

14.
Four new coordination polymers {[Ni(HL)(H2O)]·H2O}n (1), {[Co(HL)(H2O)]·H2O}n (2), {[Co(HL)]·4H2O}n (3) and {[Zn(HL)]·2H2O·0.5C2H5OH}n (4) [H3L = 5-(1H-imidazol-4-ylmethyl)aminoisophthalic acid] have been synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction analyses. Complexes 1 and 2 display (3, 3)-connected 2D network with (4, 82) topology. While 3 and 4 exhibit a binodal (3, 6)-connected 2D network with a Schläfli symbol (43)2(46, 66, 83). The complexes 14 show remarkable thermal stability and 4 exhibits blue fluorescence with maximum emission at 413 nm upon excitation at 362 nm in the solid state at room temperature. In addition, the magnetic measurements of 3 indicate that there are antiferromagnetic interactions between the neighboring Co(II) centers.  相似文献   

15.
Reactions between [Fe(η-C5H5)(MeCO)(CO)(L)], L = PPh3 (1), PMe3 (2), PPhMe2 (3), PCy3 (4), CO (5), and B(C6F5)3 give new complexes [Fe(η-C5H5){MeCOB(C6F5)3}(CO)(L)] L = PPh3 (7), PMe3 (8), PPhMe2 (9), PCy3 (10), CO (11), where B(C6F5)3 coordinates selectively to the O-acyl groups. Hydrolysis of 7 gives [Fe(η-C5H5){HOB(C6F5)3}(CO)(PPh3)] (6). The X-ray structures of 6, 8 and 11 have been determined. Calculations, using density functional theory, demonstrate that the charge transfer to the acyl group on Lewis acid coordination is more significant in the σ than the π system. Both effects lead to a lengthening of the acyl C-O bond thus π populations cannot be inferred from the distance changes.  相似文献   

16.
Aromatic thiocarboxylic acids in presence of a base on treatment with silver nitrate under ambient conditions were oxidized to the corresponding disulfides. The reactions were found to be catalyzed by Ag+ ions. The catalytic oxidation is paralleled by the Ag(SCOAr) complex formation reaction which could be considerably subsided by adjustment of the reaction conditions. Attempts to use [Ag(PPh3)2]+ or [Ag(PPh3)]+ ion as the catalyst were unsuccessful as these resulted in the formation of the corresponding thiocarboxylate complexes. The products, ArCOSSCOAr (1, 2), [Ag(SCOAr)(PPh3)2] (3, 4) and [Ag(SCOAr)(PPh3)]4 (5) (Ar = C6H5, C4H3S) were characterized by single crystal X-ray analysis. Compounds 3 and 4 are monomeric while 5 is a cyclic tetramer in the crystalline phase.  相似文献   

17.
AgOTf (OTf = trifluoromethanesulfonate) shows the reactivity differences when it reacts with carborane complexes [MCl2{(PPh2)2(C2B10H10)}] (M = Ni (2), Pd (3)). The reaction of AgOTf with the palladium complex 3 affords [Pd2(μ-OTf)2{(PPh2)2(C2B9H10)}2] (4) in high yields, while corresponding reaction between the nickel complex 2 and AgOTf leads to the formation of binuclear complexes [Ni{(PPh2)2(C2B9H10)}](μ-Cl)2[Ag{(PPh2)2(C2B10H10)}] (5) and [Ag2(μ-Cl)2 {(PPh2)2 (C2B10H10)}2] (6). The carborane cage of complexes 4 and 5 were broken to form nido-carboranes. It is believed the group 10 metals themselves play an important role in opening the closo-carborane skeleton. Directly stirring [(PPh2)2(C2B10H10)] with AgOTf afforded [Ag2(μ-OTf)2{(PPh2)2(C2B10H10)}2] (7), which is also used to react with 2 and 3. The reaction between 2 and 7 gives only 4 in high yields, however, stirring the mixture of 3 and 7 affords [Pd2(μ-Cl)2{(PPh2)2(C2B9H10)}2] (8), [Pd{(PPh2)2(C2B9H10)}2] (9) and 6. All these complexes have been characterized by IR, 1H NMR, 11B NMR and elemental analyses. Complexes 2, 4-9 have also been determined by single-crystal X-ray diffraction analyses.  相似文献   

18.
The differences between the molecular structures of the PCP-pincer complex [RuCl{C6H3(CH2P(C6H5)2)2-2,6}(PPh3)] ([RuCl(PCPH)(PPh3)], 1) and its tetrakis-pentafluorophenyl substituted analogue [RuCl{C6H3(CH2P(C6F5)2)2-2,6}(PPh3)] ([RuCl(PCPF20)(PPh3)], 2) have been rationalised by performing calculations on the cations [Ru(PCPH)(PPh3)]+ (1cat) and [Ru(PCPF20)(PPh3)]+ (2cat). The molecular interactions between the chloride ligand and the axial rings, as found in 1 and 2, respectively, have been studied computationally in the model systems [(C6X5PH2)2Cl] (X = H, F). The calculations on 2cat show that in 2 it is most likely the attractive electrostatic interaction between the chloride ligand and the fluorinated phenyl rings that forces the Cipso atom to occupy an axial position rather than an equatorial one in the observed (X-ray of 2) square pyramidal arrangement. In 1, however, repulsive steric hindrance forces the PPh3 ligand to take the apical position. The applicability of the TD-DFT method for the calculation of the electronic spectra of the PCP-pincer compounds 1 and 2 has been tested. The results indicate that the excitation energies calculated for both complexes are in a reasonable agreement with the experimental absorption maxima. However, for 1, all the calculated transition energies are underestimated.  相似文献   

19.
Three Pd(II) complexes [Pd2(μ-Cl)2{7,8-(PPh2)2-7,8-C2B9H10}2] · 0.25CH2Cl2 (1), [Pd{7,8-(PPh2)2-7,8-C2B9H10}2] · 4CHCl3 (2) and [PdCl2(1,2-(PPh2)2-1,2-C2B10H10)] (3) have been synthesized by the reactions of 1,2-(PPh2)2-1,2-C2B10H10 with PdCl2 in acetonitrile, cyanophenyl and dichloromethane, respectively. A fourth complex, [PdI2(1,2-(PPh2)2-1,2-C2B10H10)] (4), was obtained by a ligand exchange reaction through the substitution of the Cl of complex 3 with I. All four complexes have been characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopy and X-ray structure determination. Single crystal X-ray determination showed that the carborane cage, nido for 1, 2 and closo for 3, 4, was coordinated bidentately to the Pd atom through the two P atoms, and the geometry at the Pd atom was square-planar in all the complexes.  相似文献   

20.
Addition of excesses of N-heterocyclic carbenes (NHCs) IEt2Me2, IiPr2Me2 or ICy (IEt2Me2 = 1,3-diethyl-4,5-dimethylimidazol-2-ylidene; IiPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene; ICy = 1,3-dicyclohexylimidazol-2-ylidene) to [HRh(PPh3)4] (1) affords an isomeric mixture of [HRh(NHC)(PPh3)2] (NHC = IEt2Me2 (cis-/trans-2), IiPr2Me2 (cis-/trans-3), ICy (cis-/trans-4) and [HRh(NHC)2(PPh3)] (IEt2Me2(cis-/trans-5), IiPr2Me2 (cis-/trans-6), ICy (cis-/trans-7)). Thermolysis of 1 with the aryl substituted NHC, 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene (IMesH2), affords the bridging hydrido phosphido dimer, [{(PPh3)2Rh}2(μ-H)(μ-PPh2)] (8), which is also the reaction product formed in the absence of carbene. When the rhodium precursor was changed from 1 to [HRh(CO)(PPh3)3] (9) and treated with either IMes (=1,3-dimesitylimidazol-2-ylidene) or ICy, the bis-NHC complexes trans-[HRh(CO)(IMes)2] (10) and trans-[HRh(CO)(ICy)2] (11) were formed. In contrast, the reaction of 9 with IiPr2Me2 gave [HRh(CO)(IiPr2Me2)2] (cis-/trans-12) and the unusual unsymmetrical dimer, [(PPh3)2Rh(μ-CO)2Rh(IiPr2Me2)2] (13). The complexes trans-3, 8, 10 and 13 have been structurally characterised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号