首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We prove relations between the evaluations of cohomological Mackey functors over complete discrete valuation rings or fields and apply this to Mackey functors that arise naturally in number theory. This provides relations between λ- and μ-invariants in Iwasawa theory, between Mordell-Weil groups, Shafarevich-Tate groups, Selmer groups and zeta functions of elliptic curves, and between ideal class groups and regulators of number fields.  相似文献   

2.
Gauss made two conjectures about average values of class numbers of orders in quadratic number fields, later on proven by Lipschitz and Siegel. A version for function fields of odd characteristic was established by Hoffstein and Rosen. In this paper, we extend their results to the case of even characteristic. More precisely, we obtain formulas of average values of L-functions associated to orders in quadratic function fields over a constant field of characteristic two, and then derive formulas of average class numbers of these orders.  相似文献   

3.
We present certain norm-compatible systems in K2 of function fields of some CM elliptic curves. We demonstrate that these systems have some properties similar to elliptic units.  相似文献   

4.
Based on the analogy between number fields and function fields of one variable over finite fields, we formulate and prove an analogue of the exceptional zero conjecture of Mazur, Tate and Teitelbaum for elliptic curves defined over function fields. The proof uses modular parametrization by Drinfeld modular curves and the theory of non-archimedean integration. As an application we prove a refinement of the Birch-Swinnerton-Dyer conjecture if the analytic rank of the elliptic curve is zero.  相似文献   

5.
Lately, I. Miyada proved that there are only finitely many imaginary abelian number fields with Galois groups of exponents ≤2 with one class in each genus. He also proved that under the assumption of the Riemann hypothesis there are exactly 301 such number fields. Here, we prove the following finiteness theorem: there are only finitely many imaginary abelian number fields with one class in each genus. We note that our proof would make it possible to find an explict upper bound on the discriminants of these number fields which are neither quadratic nor biquadratic bicyclic. However, we do not go into any explicit determination.  相似文献   

6.
We show that, for any finite field Fq, there exist infinitely many real quadratic function fields over Fq such that the numerator of their zeta function is a separable polynomial. As pointed out by Anglès, this is a necessary condition for the existence, for any finite field Fq, of infinitely many real function fields over Fq with ideal class number one (the so-called Gauss conjecture for function fields). We also show conditionally the existence of infinitely many real quadratic function fields over Fq such that the numerator of their zeta function is an irreducible polynomial.  相似文献   

7.
We prove that there are effectively only finitely many real cubic number fields of a given class number with negative discriminants and ring of algebraic integers generated by an algebraic unit. As an example, we then determine all these cubic number fields of class number one. There are 42 of them. As a byproduct of our approach, we obtain a new proof of Nagell's result according to which a real cubic unit ?>1 of negative discriminant is generally the fundamental unit of the cubic order Z[?].  相似文献   

8.
In this paper we will apply Biró's method in [A. Biró, Yokoi's conjecture, Acta Arith. 106 (2003) 85-104; A. Biró, Chowla's conjecture, Acta Arith. 107 (2003) 179-194] to class number 2 problem of real quadratic fields of Richaud-Degert type and will show that there are exactly 4 real quadratic fields of the form with class number 2, where n2+1 is a even square free integer.  相似文献   

9.
We find a tight relationship between the torsion subgroup and the image of the mod 2 Galois representation associated to an elliptic curve defined over the rationals. This is shown using some characterizations for the squareness of the discriminant of the elliptic curve.  相似文献   

10.
Let K be a real quadratic field with 2-class rank equal to 4 or 5 and 4-class rank equal to 3. This paper computes density information for such fields to have infinite Hilbert 2-class field towers.  相似文献   

11.
In this paper, we give parametric families of both real and complex quadratic number fields whose class group has 3-rank at least 2. As a consequence, we obtain that for all large positive real numbers x, the number of both real and complex quadratic fields whose class group has 3-rank at least 2 and absolute value of the discriminant ?x is >cx1/3, where c is some positive constant.  相似文献   

12.
We obtain lower bound of caliber number of real quadratic field using splitting primes in K. We find all real quadratic fields of caliber number 1 and find all real quadratic fields of caliber number 2 if d is not 5 modulo 8. In both cases, we don't rely on the assumption on ζK(1/2).  相似文献   

13.
We estimate the bounds for the difference between the ordinary height and the canonical height on elliptic curves over number fields. Our result is an improvement of the recent result of Cremona, Prickett, and Siksek [J.E. Cremona, M. Prickett, S. Siksek, Height difference bounds for elliptic curves over number fields, J. Number Theory 116 (2006) 42-68]. Our bounds are usually sharper than the other known bounds.  相似文献   

14.
This paper investigates the 2-class group of real multiquadratic number fields. Let p1,p2,…,pn be distinct primes and . We draw a list of all fields K whose 2-class group is trivial.  相似文献   

15.
This paper shows that a positive proportion of the imaginary quadratic fields with 2-class rank equal to 3 have 4-class rank equal to zero and infinite Hilbert 2-class field towers. Received: 14 January 2003  相似文献   

16.

Text

Given an elliptic curve with supersingular reduction at an odd prime p, Iovita and Pollack have generalised results of Kobayashi to define even and odd Coleman maps at p over Lubin-Tate extensions given by a formal group of height 1. We generalise this construction to modular forms of higher weights.

Video

For a video summary of this paper, please click here or visit http://www.youtube.com/watch?v=KQpsht0JaME.  相似文献   

17.
The Scholz theorem in function fields states that the l-rank difference between the class groups of an imaginary quadratic function field and its associated real quadratic function field is either 0 or 1 for some prime l. Furthermore, Leopoldt's Spiegelungssatz (= the Reflection theorem) in function fields yields a comparison between the m-rank of some subgroup of the class group of an imaginary cyclic function field L1 and the m-rank of some subgroup of the class group of its associated real cyclic function field L2 for some prime number m; then their m-ranks also equal or differ by 1. In this paper we find an explicit necessary condition for their m-ranks (respectively l-ranks) to be the same in the case of cyclic function fields (respectively quadratic function fields). In particular, in the case of quadratic function fields, if l does not divide the regulator of L2, then their l-ranks are the same, equivalently if their l-ranks differ by 1, then l divides the regulator of L2.  相似文献   

18.
Let K be a number field and let G be a finite abelian group. We call K a Hilbert-Speiser field of type G if, and only if, every tamely ramified normal extension L/K with Galois group isomorphic to G has a normal integral basis. Now let C2 and C3 denote the cyclic groups of order 2 and 3, respectively. Firstly, we show that among all imaginary quadratic fields, there are exactly three Hilbert-Speiser fields of type $C_{2}: \mathbb{Q}(\sqrt {m})$, where $m \in \{-1, -3, -7\}$. Secondly, we give some necessary and sufficient conditions for a real quadratic field $K = \mathbb{Q}(\sqrt {m})$ to be a Hilbert-Speiser field of type C2. These conditions are in terms of the congruence class of m modulo 4 or 8, the fundamental unit of K, and the class number of K. Finally, we show that among all quadratic number fields, there are exactly eight Hilbert-Speiser fields of type $C_{3}: \mathbb{Q}(\sqrt {m})$, where $m \in \{-11,-3, -2, 2, 5, 17, 41, 89\}$.Received: 2 April 2002  相似文献   

19.
We compute the index of a certain extension of Sinnott's group of circular units in the group of all units of a bicyclic field. From this index we obtain some divisibility properties for class numbers of bicyclic fields.  相似文献   

20.
In this paper abelian function fields are restricted to the subfields of cyclotomic function fields. For any abelian function field K/k with conductor an irreducible polynomial over a finite field of odd characteristic, we give a calculating formula of the relative divisor class number of K. And using the given calculating formula we obtain a criterion for checking whether or not the relative divisor class number is divisible by the characteristic of k.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号