首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gold catalysts supported on SiO2, TiO2, TiO2-SiO2, and ZrO2-SiO2 supports were prepared by impregnating each support with a basic solution of tetrachloroauric acid. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques were used to characterize their structure and surface composition. The results indicated that the size of gold particles could be controlled to below 10 nm by this method of preparation. Washing gold catalysts with water could markedly enhance the dispersion of metallic gold particles on the surface, but it could not completely remove the chloride ions left on the surface. The catalytic performance of direct vapor-phase epoxidation of propylene using air as an oxidant over these catalysts was evaluated at atmospheric pressure. The selectivity to propylene oxide (PO) was found to vary with reaction time on the stream. At the reaction conditions of atmosphere pressure, temperature 325 ℃, feed gas ratio V(C3H6)/V(O2)= 1/2, and GHSV =6000h^-1, 17.9% PO selectivity with 0.9% propylene conversion were obtained at initial 10 min for Au/SiO2 catalyst. After reacting 60 min only 8.9% PO selectivity were detected, but the propylene conversion rises to 1.4% and the main product is transferred to acrolein (72% selectivity). Washing Au/TiO2-SiO2 and Aa/ZrO2-SiO2 samples with magnesium citrate solution could markedly enhance the activity and PO selectivity because smaller gold particles were obtained.  相似文献   

2.
An efficient, one-pot Friedel-Crafts acylation/hydrolysis reaction promoted by the acidic ionic liquid 1-ethyl-3-methylimidazolium chloroaluminate (generated from 1-ethyl-3-methylimidazolium chloride (EmimCl) and aluminum chloride (X(AlCl3), mole fraction X = 0.75) for the formation of 3-glyoxylic acid derivatives of electron-deficient, substituted 4- and 6-azaindoles is described.  相似文献   

3.
In this work, 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU), 1,5‐diazabicyclo[4.3.0]‐5‐nonene (DBN), and imidazole (MIM)‐derived bromide ionic liquids (ILs) were synthesized and used to catalyze the cycloaddition reactions of carbon dioxide (CO2) with several kinds of epoxides to form cyclic carbonates. The DBU derived bromide ionic liquid system was found to have the best catalytic activity among all the tested ILs. The influences of reaction conditions (including temperature, pressure and reaction time) on the reaction of CO2 to propylene oxide (PO) were studied to show the best conditions of 120 °C, 1 MPa, 2.5 h catalyzed by 2 mol% DBU‐derived bromide ionic liquid, with the conversion of PO and the selectivity of propylene carbonate (PC) reaching 99% and 99%, respectively. Under the optimum reaction conditions, the ionic liquid system could be reused at least five times without decrease in selectivity and conversion. NMR spectroscopy and DFT calculations were used to reveal the hydrogen‐bond interaction between ionic liquids and reagent, based on which the reaction mechanism was proposed.  相似文献   

4.
The effect of ionic liquids on the formation of a partial positive charge on the surface of silver nanoparticle and its subsequent effect on facilitated olefin transport were investigated. Three different ionic liquids of 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM+BF4), 1-butyl-3-methylimidazolium triflate (BMIM+Tf), and 1-butyl-3-methylimidazolium nitrate (BMIM+NO3) were employed to control the positive charge density of the surface of silver nanoparticles. The positive charge density of the silver nanoparticles, as characterized by the binding energy of the silver atom, was in the following order: BMIM+BF4/Ag ? BMIM+Tf/Ag > BMIM+NO3/Ag. This order was consistent with the tendency of ionic liquids to form free ions. The best separation performance for the propylene/propane mixtures was a mixed gas selectivity of 17 and a permeance of 7 GPU through a composite membrane consisting of BMIM+BF4/Ag. A better separation performance for olefin/paraffin mixtures was observed with a higher positive charge density of the silver nanoparticles. It was therefore concluded that facilitated olefin transport was a direct consequence of the surface positive charge of the silver nanoparticles induced by ionic liquids.  相似文献   

5.
The epoxidation of propylene with hydrogen peroxide catalyzed by a reaction-controlled phase transfer catalyst (RCPT) composed of quaternary ammonium heteropolyoxotungstates in acetonitrile medium is studied. The influence of several factors on the reaction is studied, such as the reaction temperature, the effect of H2O amount, the reaction time, the effect of the catalyst amount, solvent effect and the recycle of the catalyst. Under mild conditions, H2O2 conversion is 98.6%, and propylene oxide (PO) selectivity based on H2O2 is 97.2%. During the epoxidation, the catalyst is dissolved in the solution. However, after H2O2 is used up, the catalyst can be recovered as a precipitate and can be recycled. We find that the recycled catalyst has similar catalytic activity as the fresh one.  相似文献   

6.
1-Propyl-3-methylimidazolium chloride ([C3MIm]Cl) ionic liquid and sulfamic acid (NH2SO3H), as a synergetic catalytic medium, were used for the transesterification of acetoacetate with alcohols of different structures. It shows the good ability for the chemoselective transesterificatin of β-ketoesters and maintains its catalytic activity in the reuse.  相似文献   

7.
Cyclodehydration of diethylene glycol using various Brønsted acidic ionic liquids as dual solvent-catalysts has been studied for the first time. Better results were obtained in the presence of 1-butyl-3-methylimidazolium hydrogen sulfate ([PSmim]HSO4) compared with other Brønsted acidic ionic liquids. Effects of the reaction conditions such as reaction temperature, reaction time and molar ratio of ionic liquid to diethylene glycol have been investigated. High diethylene glycol conversion, 97.0 %, and high 1,4-dioxane selectivity, 89.3 %, were obtained in [PSmim]HSO4 under optimum conditions. Hammett method was used to determine the acidity order of these ionic liquids and the results were consistent with the catalytic activities observed in the cyclodehydration reaction. Utilization of Brønsted acidic ionic liquids as dual solvent-catalysts has some advantages, e.g. high conversion of DEG, easy preparation and reuse of ionic liquids, avoiding toxic catalysts and solvents.  相似文献   

8.
The glycolysis of poly(ethylene terephthalate) (PET) was studied using several ionic liquids and basic ionic liquids as catalysts. The basic ionic liquid, 1-butyl-3-methylimidazolium hydroxyl ([Bmim]OH), exhibits higher catalytic activity for the glycolysis of PET, compared with 1-butyl-3-methylimidazolium bicarbonate ([Bmim]HCO3), 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) and 1-butyl-3-methylimidazolium bromide ([Bmim]Br). FT-IR, 1H NMR and DSC were used to confirm the main product of glycolysis was bis(2-hydroxyethyl) terephthalate (BHET) monomer. The influences of experimental parameters, such as the amount of catalyst, glycolysis time, reaction temperature, and dosages of ethylene glycol on the conversion of PET, yield of BHET were investigated. The results showed a strong influence of the mixture evolution of temperature and reaction time on depolymerization of PET. Under the optimum conditions of m(PET):m(EG): 1:10, dosage of [Bmim]OH at 0.1 g (5 wt%), reaction temperature 190 °C and time 2 h, the conversion of PET and the yield of BHET were 100% and 71.2% respectively. Balance between the polymerization of BHET and depolymerization of PET could be changed when the reaction time was more than 2 h and contents of catalyst and EG were changed.  相似文献   

9.
The catalytic activities of tetraphenylporphinatoaluminum chloride (TPPAlCl) and its propylene oxide adduct (TPPAl(PO)2Cl) were investigated in detail together with a quarternary salt Et4NBr for the copolymerization of carbon dioxide and propylene oxide. In addition, for the components and starting raw materials of the catalyst systems, catalytic activities were examined for the copolymerization. The TPPAlCl catalyst delivered oligomers containing ether linkages to a large extent, regardless of its PO adduction. And cyclic propylene carbonate, as byproduct, was formed in a very small portion. Using the TPPAlCl coupled with Et4NBr as a catalyst system, the formation of ether linkages was reduced significantly in the copolymerization; however, the obtained oligomer still contained ether linkages of 25.0 mol % in the backbone. On the other hand, the formation of cyclic carbonate was increased to 22.4 mol % relative to the oligomer product. The results indicate that the salt, which was coupled with the TPPAlCl catalyst, plays a key role in reducing the formation of ether linkage in the oligomer and, however, in enhancing the formation of cyclic carbonate. Similar results were obtained for the copolymerization catalyzed by the TPPAl(PO)2Cl/Et4NBr system. That is, the formation of ether linkages was not restricted further by the PO adduction of the TPPAlCl component in the catalyst system. Only oligomers with a relatively high molecular weight were produced. This indicates that the PO adduction of the TPPAlCl component contributes highly to the initiation and propagation step in the oligomerization, consequently leading to a relatively high molecular weight oligomer. In contrast, the Et4NBr, as well as the Et2AlCl, produced only cyclic carbonate in a very low yield. Furthermore, tetraphenylporphine exhibited no catalytic activity, regardless of using together with Et4NBr. On the other hand, the Et2AlCl coupled with Et4NBr provided a low molecular weight oligomer having ether linkages of 92.3 mol % in addition to the cyclic carbonate. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3329–3336, 1999  相似文献   

10.
Vapour–liquid equilibrium measurements for binary and ternary systems containing carbon dioxide, 1-propanol, and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide or 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquids are presented in this work. The binary CO2 + 1-decyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide system at 313.15 K at pressure range from 2 to 14.4 MPa was examined. The obtained phase envelop shows that even at low pressure of CO2 the solubility of the gas in the ionic liquid is high. The ternary phase equilibria were studied at 313.15 K and pressures in the range from 9 to 12 MPa. The ternary phase diagrams show that higher CO2 pressure diminishes the miscibility gap.  相似文献   

11.
The Ni(PPh3)n-Et3Al2Al3 catalytic system was found to be most effective for the dimerization of ethylene and propylene when the ligands Bu3PO and (BuO)2-PNEt2 were used in the Ni complex. For propylene dimerization in the liquid phase, the yield was 54 kmole/mole Ni-h at 40–55C. Using mathematical planning methods for the experiments the optimum conditions range for the formation of hexanes was found, in which selectivity for dimerization reached 85–96% at 80–90% conversion.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 3, pp. 512–516, March, 1990.For previous communication, see [1].  相似文献   

12.
Ionic liquids based on the 1-methylimidazolium cation with chloride, bromide, hydrogen sulfate, and tetrafluoroborate counterions along with 1-butyl-3-methylimidazolium hydrogen sulfate were employed to degrade two lignin model compounds, guaiacylglycerol-β-guaiacyl ether and veratrylglycerol-β-guaiacyl ether. The acidity of each ionic liquid was approximated using 3-nitroaniline as an indicator to measure the Hammett acidity (H0). While all of the tested ionic liquids were strongly acidic (H0 between 1.48 and 2.08), the relative acidity did not correlate with the ability of the ionic liquid to catalyze β-O-4 ether bond hydrolysis. The reactivity of the model compounds in the ionic liquids is dependent not only on the acidity, but also on the nature of the ions and their interaction with the model compounds.  相似文献   

13.
A simple ionic liquid methodology for the synthesis of a novel derivative of dehydroabietic acid is described. 1-Butyl-3-methylimidazolium tetrafluoroborate [bmim]BF4, a typical ionic liquid, was used as an efficient and environmentally benign solvent in the synthesis of dehydroabietic acid (2-acryloloxy) ethyl ester by O-acylation reaction of dehydroabietic acid chloride with 2-hydroxyethyl acrylate. This new method showed the advantages of mild reaction conditions, short reaction times, good yields, and recyclable solvent.  相似文献   

14.
By using nano TiO2-Y2O3 as catalyst, cataluminescence (CTL) phenomenon of propylene oxide (PO) was studied, and it was found that the sensor has high sensitivity and good selectivity for the detection of propylene oxide. The common volatile organic compounds (VOCs) such as acetone, acetaldehyde and benzene show no response to the catalysis of TiO2-Y2O3. Based on this phenomenon, a propylene oxide CTL sensor was designed. The ratio of TiO2 and Y2O3 and the annealed temperatures of the composites were optimized. It was found that when the mass ratio of TiO2 and Y2O3 was 1:3 and the annealed temperature was 500 °C, the catalytic materials showed the best performance. 0.3 L min?1 of carrier gas flow rate, 490 nm of detection wavelength and 197 °C of working temperature were selected as the optimal working conditions, and under the optimized conditions, the quantitative analysis was performed and CTL intensity was linearly correlated with PO concentration from 4.5 mg L–1 to 1375 mg L–1 with a detection limit (3σ) of 1.25 mg L–1. The sensor was used for quantitative analysis and real-time monitoring of propylene oxide residues in fumigation cereals. The result was consistent with that analyzed by gas chromatography. The CTL sensor proposed here had many merits such as high sensitivity, rapidity and simple operation and had potential application prospects in the rapid detection of propylene oxide in food. At last, the mechanism of catalytic oxidation of PO was discussed as well.  相似文献   

15.
《中国化学快报》2023,34(3):107658
The direct epoxidation of propylene by O2 is a significant and challenging topic. The key factor for this homogeneous aerobic epoxidation is the activation of molecular oxygen under mild conditions. In this work, the aerobic epoxidation of propylene catalyzed by manganese porphyrins was achieved in the presence of isoprene. Isoprene contains an allyl methyl group, and the α-H can be easily removed to achieve the activation of molecular oxygen. The conversion of propylene was 38% and the selectivity toward propylene oxide (PO) was up to 87%. The role of isoprene was demonstrated, and a plausible mechanism was proposed. The protocol reported herein is expected to provide a strategy for the simultaneous preparation of propylene oxide and isoprene monoxide.  相似文献   

16.
固定床反应器上挤条小晶粒TS-1催化丙烯环氧化反应   总被引:1,自引:0,他引:1  
采用纳米TS-1母液作为晶种, 在四丙基溴化铵(TPABr)-乙胺廉价水热体系中, 合成出晶粒尺寸为600 nm×400 nm×250 nm的小晶粒钛硅分子筛(TS-1), 用挤条法将其成型, 得到的挤条小晶粒TS-1被用于催化固定床反应器中的丙烯环氧化反应. 采用X射线衍射(XRD)光谱, 傅里叶变换红外(FT-IR)光谱, 紫外-可见(UV-Vis)漫反射光谱及氮气物理吸附对挤条成型的小晶粒TS-1进行表征, 并对丙烯环氧化的最优反应条件进行考察. 其中所考察的条件包括: 反应温度, 压力, 丙烯/H2O2摩尔比(n(C3H6)/n(H2O2)), 丙烯、甲醇及H2O2的质量空速(WHSV), 以及NH3·H2O浓度. 在所考察的范围内, 温度对环氧丙烷(PO)收率的影响较小, 当反应压力为2.0 MPa, n(C3H6)/n(H2O2)为4时, 可以得到最高的PO收率. 当丙烯、甲醇及H2O2的空速分别为0.93、2.5及0.25 h-1时, PO在产物中的含量最高. 较低的NH3·H2O浓度对高PO收率更有利. 在优化的反应条件下, 对比不同晶粒大小TS-1的催化性能, 并考察了挤条小晶粒TS-1的长期运转性能, 连续反应1000 h, H2O2转化率及PO选择性仍能维持在95%以上.  相似文献   

17.
The synthesis of propylene carbonate from propylene oxide and carbon dioxide under supercritical conditions in the presence of 1-octyl-3-methylimidazolium tetrafluoroborate was achieved in nearly 100% yield and 100% selectivity within 5 minutes, whose TOF value is 77 times larger than those so far reported.  相似文献   

18.
Three pyrazolium ionic liquids, 1,2-diethylpyrazolium bromide (DEPzBr), 1,2-diethyl-3-methylpyrazolium bromide (DEMPzBr), and 1,2-diethyl-3,5-dimethylpyrazolium bromide (DEDMPzBr), are firstly applied as catalysts for coupling reaction of carbon dioxide (CO2) and propylene oxide (PO) with the propylene carbonate (PC) yields in a range of 82.7%–88.7% under a benign condition, 120?°C, 2.0?MPa initial CO2 pressure and 4?h with 0.5?mol% catalysts loading. The relationship between structure and catalytic activity of pyrazolium ionic liquids are investigated by two different theoretical models, which indicates that both electrostatic interaction and hydrogen bond promote the ring-opening of PO. Both the theoretical and experimental results present that the catalytic activity decreases in the sequence of DEPzBr?>?DEDMPzBr?>?DEMPzBr. Pyrazolium ionic liquids would be employed as a novel efficient single-component catalyst without solvent and co-catalyst. It is expected that we would open an express pathway to develop new catalysts with the desired properties.  相似文献   

19.
Carbon dioxide (CO2) is an easily available renewable carbon source that can be used as a comonomer in the catalytic ring-opening polymerization of epoxides to form aliphatic polycarbonates. Herein, a series of new Salen-Co(III) bifunctional catalysts were synthesized for the first time, and they were studied to catalyze the copolymerization of CO2 and propylene oxide (PO)/cyclohexene oxide (CHO). At the same time, the effects of reaction conditions (electronic effect, temperature, time) on catalytic activity and selectivity were investigated. The results show that the Salen-Co(III) complexes with electron-withdrawing groups have higher selectivity and activity for propylene carbonate (PPC)/cyclohexylene carbonate (PCHC). At the same time, the Salen-Co(III) complexes can better catalyze the copolymerization of CHO and CO2 than that of PO and CO2. The catalytic efficiency of the four complexes increased with increasing temperature, and the best reaction condition is 80°C, 30 min and 2 MPa of CO2.  相似文献   

20.
The effect ionic liquid (IL) 1-ethyl-3-methylimidazolium tetrafluoroborate has on the coordination environment of Li+ cations in carbonate solvents is studied by means of IR spectroscopy and quantum chemical modeling using the example of propylene carbonate (PC). LiBF4 is used as the lithium salt. This system is promising for use as an electrolyte in lithium power sources (LPSs), but the mechanism of ionic conductivity by Li+ ions in such systems has yet to be studied in full.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号