首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The novel germanium-containing alkylidene complexes of molybdenum R3Ge-CHMo(NAr)(OCMe2CF3)2 (Ar = 2,6-i-Pr2C6H3; R = Me, Ph) have been prepared by the reaction of organogermanium vinyl reagents R3 GeCHCH2 with known alkylidene compounds Alkyl-CHMo(NAr)(OCMe2CF3)2 (Alkyl = But, PhMe2C). The titled compounds were isolated as crystalline solids and characterized by elemental analysis, 1H NMR, 13C NMR spectroscopy and X-ray diffraction studies. The geometry of the Mo atoms in the compounds can be described as a distorted tetrahedron.  相似文献   

2.
A series of chiral ansa-zirconocene ester enolate complexes incorporating C2- or Cs-symmetric ligands, including neutral rac-(EBI)ZrCl[OC(OiPr)CMe2] (1), rac-(EBI)Zr(OTf)[OC(OiPr)CMe2] (2), rac-(EBI)Zr(OTf)[OC(OMe)C(Me)CH2C(Me2)C(OiPr)O] (3), [Me2C(Cp)(Flu)]ZrMe[OC(OiPr)CMe2] (4), and cationic [Me2C(Cp)(Flu)]Zr+(THF)[OC(OiPr)CMe2][MeB(C6F5)3] (5), have been synthesized. Within the neutral C2-ligated zirconocene ester enolate series, the chloride derivative 1 is inactive toward any methyl methacrylate (MMA) additions, the methyl derivative rac-(EBI)ZrMe[OC(OiPr)CMe2] adds cleanly only 1 equiv. of MMA, and the triflate derivative 2 can add either 1 equiv. of MMA to form the single-MMA-addition product 3 or multiple equivalents of MMA to form P(MMA). Unlike the Cs-ligated methyl cation [Me2C(Cp)(Flu)ZrMe]+, which is inactive for MMA polymerization under various conditions, the Cs-ligated ester enolate cation 5 is moderately active for polymerization of MMA and N,N-dimethylacrylamide at ambient temperature; the resulting P(MMA) has a high molecular weight of Mn = 388 000 Da but a low syndiotacticity of [rr] = 64%, and the polymerization conforms to a chain-end control mechanism.  相似文献   

3.
Bimetallic alkylidene complexes of tungsten (R′O)2(ArN)WCH-SiR2-CHW(NAr)(OR′)2 (R = Me (1), Ph (2)) and (R′O)2(ArN)WCH-SiMe2SiMe2-CHW(NAr)(OR′)2 (3) (Ar = ; R′ = CMe2CF3) have been prepared by the reactions of divinyl silicon reagents R2Si(CHCH2)2 with known alkylidene compounds R′′-CHMo(NAr)(OR′)2. (R′′ = But, PhMe2C) Complexes 1-3 were structurally characterized. Ring opening metathesis polymerization (ROMP) of cyclooctene using compounds 1-3 as initiators led to the formation of high molecular weight polyoctenamers with predominant trans-units content in the case of 1 and 3 and predominant cis-units content in the case of 2.  相似文献   

4.
The multifunctional ligands [(Z)-FcCCSC(H)C(H)XR] [X = O, R = Me (2a); X = O, R = Et (2b); X = S, R = Ph (3); X = S, R = C6F5 (5)] and [(Z,Z)-Fc(SR)CC(H)SC(H)C(H)SR] [R = Ph (4), C6F5 (6)] have been prepared through hydroalkoxylation and hydrothiolation processes of the alkyne groups in the compound FcCCSCCH 1. Reactions between compound 3 and the carbonyl metals Co2(CO)8, Os3(CO)10(NCMe)2 and Fe2(CO)9 have allowed the synthesis of the polynuclear compounds [(Z)-{Co2(CO)6}(μ-η2-FcCCSC(H)C(H)SPh)] 9, [(Z)-Os3(CO)9(μ-CO){μ32-FcCCSC(H)C(H)(SPh)}] 10 and [(Z)-{Fe3(CO)9}[μ33-(CCS)-FcCCSC(H)C(H)(SPh)] 11. All the compounds have been characterized by elemental analysis, 1H and 13C{1H} NMR spectroscopy, mass spectrometry and the crystal structure of compounds [(Z)-FcCCSC(H)C(H)OMe] 2a and [{Co2(CO)6}2(μ-η22-FcCCSCCSiMe3)] 7 have been solved by X ray diffraction analysis.  相似文献   

5.
The interaction of tris(trimethylsilyl) phosphite (TMSO)3P and E-trifluoromethyl-β-alkoxyenones CF3C(O)CHCHOEt and CF3C(O)CHC(OMe)Me yielded mixtures of E-1,2- and Z-1,4-adducts, CF3C(OTMS)[P(O)(OTMS)2]CCH(OAlk)R 2 and CF3(OTMS)CCHCR(OAlk)[P(O)(OTMS)2] 3 where R and Alk = H and Me, or both Me. Conversion of these 1,2-adducts to 1,4-isomers was effected by increased temperature or by exposure to more tris(trimethylsilyl) phosphite. Acid hydrolysis of 2b (R and Alk = Me) gave ketophosphonic acid CF3C(OH)[P(O)(OH)2]CH2COMe in 88% yield, whereas hydrolysis of 2a (R = H and Alk = Et) with KOH in methanol gave CF3C(OH)[P(O)(OK)2]CHCHOEt in 37% yield. Acid hydrolysis of 3a (R = H and Alk = Et) and 3b (R and Alk = Me) gave phosphonic acid CF3C(OH)2CHCHP(O)(OH)2 in 82% yield and trifluoromethylated 1,2λ5σ4-oxaphosphol-3-en.  相似文献   

6.
7.
The SPh functionalized vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(SPh)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] [R = Xyl, R′ = Me, 2a; R = Me, R′ = Me, 2b; R = 4-C6H4OMe, R′ = Me, 2c; R = Xyl, R′ = CH2OH, 2d; R = Me, R′ = CH2OH, 2e; Xyl = 2,6-Me2C6H3] are generated in high yields by treatment of the corresponding vinyliminium complexes [Fe2{μ-η13-Cγ(R′)Cβ(H)CαN(Me)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (1a-e) with NaH in the presence of PhSSPh. Likewise, the diruthenium complex [Ru2{μ-η13-Cγ(Me)Cβ(SPh)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2][SO3CF3] (2f) was obtained from the corresponding vinyliminium complex [Ru2{μ-η13-Cγ(Me)Cβ(H)CαN(Me)(Xyl)}(μ-CO)(CO)(Cp)2] (1f). The synthesis of 2c is accompanied by the formation, in comparable amounts, of the aminocarbyne complex [Fe2{μ-CN(Me)(4-C6H4OMe)}(SPh)(μ-CO)(CO)(Cp)2] (3).The molecular structures of 2d, 2e and 3 have been determined by X-ray diffraction studies.  相似文献   

8.
Reactions of Fe2(CO)9 with Cp(CO)2MnCCHPh (1) and Cp(CO)(PPh3)MnCCHPh (3) gave the heterometallic trimethylenemethane complexes η4-{C[Mn(CO)2Cp](CO)CHPh}Fe(CO)3 (2) and η4-{C[Mn(CO)(PPh3)Cp](CO)CHPh}Fe(CO)3 (4), respectively. The formation of the benzylideneketene [PhHCCCO] fragment included in complexes 2 and 4 occurs via intramolecular coupling of the carbonyl and vinylidene ligands. The structures of 3 and 4 were determined by single crystal XRD methods. The influence of the nature of the L ligands at the Mn atom on the structural and spectroscopic characteristics of η4-{C[Mn(CO)(L)Cp](CO)CHPh}Fe(CO)3 (L = CO (2), PPh3 (4)) is considered. According to the VT 1H and 13C NMR spectra, complex 2 reversibly transforms in solution into μ-η11-vinylidene isomer Cp(CO)2MnFe(μ-CCHPh)(CO)4 (2a), whereas complex 4 containing the PPh3 ligand is not able to a similar transformation.  相似文献   

9.
The synthesis and structural characterization of the first ruthenium phosphoramidite allenylidene complexes that are chiral at the metal are described. The precursor complex [RuCl(Ind)(PPh3)2] (Ind = indenyl anion) was reacted with 1 equiv of different chiral phosphoramidite ligands L to give complexes of the general formula [RuCl(Ind)(PPh3)L]. These complexes are stereogenic at the metal and at the ligand L. One of these complexes was obtained in diastereomeric purity, and was subsequently converted to allenylidene complexes of the general formula [RuCCCR′R(Ind)(PPh3)L]+PF6 (R = R′ = Ph; R = Ph, R′ = Me) in diastereomeric purity. As shown by X-ray, the chiral information is completely transferred from the precursor complex to the allenylidenes, which is of importance for potential catalytic applications.  相似文献   

10.
The diruthenium μ-allenyl complex [Ru2(CO)(NCMe)(μ-CO){μ-η12-C(H)CC(Me)(Ph)}(Cp)2][BF4], 3b, reacts with halide anions to yield the neutral derivatives [Ru2(CO)2(X){μ-η12-C(H)CC(Me)(Ph)}(Cp)2] [X = Cl, 4b; X = Br, 4c; X = I, 4d]. Complex 4b undergoes isomerization to the unprecedented bridging vinyl-chlorocarbene species [Ru2(CO)(μ-CO){μ-η13- C(Cl)C(H)C(Me)(Ph)}(Cp)2], 10, upon filtration of a CH2Cl2 solution through an alumina column.Complex 3b reacts with an excess of NaBH4 to give five products: the allene complex [Ru2(CO)2{μ-η22- CH2CC(Me)(Ph)}(Cp)2], 5; the hydride species trans-[Ru2(CO)2(μ-H){μ-η12-CHCC(Me)(Ph)}(Cp)2], 6, and cis-[Ru2(CO)2(μ-H){μ-η12-CHCC(Me)(Ph)}(Cp)2], 8; the vinyl-alkylidene [Ru2(CO)(μ-CO){μ-η13- C(H)C(H)C(Me)(Ph)}(Cp)2], 9; and the cluster [Ru3(CO)3(μ-H)3(Cp)3], 7.Studies on the thermal stabilities of 5, 6, 8 and 9 have suggested a plausible mechanism for the formation of these complexes and for the synthesis of 10.  相似文献   

11.
The racemic rhenium-containing phosphine (η5-C5H5)Re(NO)(PPh3)(CH2PPh3) (3) catalyzes the [3+2] cycloaddition of H2CCCHCO2Et and N-tosyl imines ArCHNTs in C6H6 (RT, 1 d, 20 mol %) to give 2-aryl-3-carbethoxy-3-pyrrolines (Arp-C6H4X (X = H, NO2, OMe, Me, Cl, Br), 2-furyl; 95-84% isolated). Similar reactions with enantiopure (S)-3 are conducted in C6H5Cl at −30 °C (8 d) to maximize enantioselectivities (60-51% ee; 93-90% isolated).  相似文献   

12.
Reactions of Ru(CCPh)(PPh3)2Cp with (NC)2CCR1R2 (R1 = H, R2 = CCSiPri38; R1 = R2 = CCPh 9) have given η3-butadienyl complexes Ru{η3-C[C(CN)2]CPhCR1R2}(PPh3)Cp (11, 12), respectively, by formal [2 + 2]-cycloaddition of the alkynyl and alkene, followed by ring-opening of the resulting cyclobutenyl (not detected) and displacement of a PPh3 ligand. Deprotection (tbaf) of 11 and subsequent reactions with RuCl(dppe)Cp and AuCl(PPh3) afforded binuclear derivatives Ru{η3-C[C(CN)2]CPhCHCC[MLn]}(PPh3)Cp [MLn = Ru(dppe)Cp 19, Au(PPh3) 20]. Reactions between 8 and Ru(CCCCR)(PP)Cp [PP = (PPh3)2, R = Ph, SiMe3, SiPri3; PP = dppe, R = Ph] gave η1-dienynyl complexes Ru{CCC[C(CN)2]CRCH[CC(SiPri3)]}(PP)Cp (15-18), respectively, in reactions not involving phosphine ligand displacement. The phthalodinitrile C6H(CCSiMe3)(CN)2(NH2)(SiMe3) 10 was obtained serendipitously from (Me3SiCC)2CO and CH2(CN)2, as shown by an XRD structure determination. The XRD structures of precursor 7 and adducts 11, 12 and 17 are also reported.  相似文献   

13.
Dihaloalkynes of the type YCH(R)CCCH(R)Y (Y = Cl, Br, I; R = H or Me) or YCMe2CCCMe2Y were prepared from their diol precursors and reacted with [Mo(CO)3(phen)Y] (phen = 1,10-phenanthroline) in chlorinated solvent, methanol or water. Formation and stability of substituted products of the type [Mo(CO)23-CH(R)C(COX)CCH(R))(phen)Y] (X = Y or X = OMe) were found to be dependent upon the nature of the halogen and degree of alkyl substitution of the alkyne. Reactions carried out in mixtures of methanol and ethers gave an alternative double addition product of the type [Mo(CO)23-CH(R)C(CO2Me)CC(OMe)(CH2R))(phen)Y] for R = H, Y = Cl only.  相似文献   

14.
The syntheses of ketimide titanium complexes of the type Ti(NCtBu2)3X (X = Cl, Cp, Ind), Ti(NCtBu2)4 and the zirconium complex CpZr(NCtBu2)2Cl are described. When activated by MAO, all compounds are ethylene polymerisation catalysts. In the conditions studied, the most active catalyst is CpZr(NCtBu2)2Cl, with an activity of 2.7 × 105 kg/(molZr [E] h). Titanium complexes are less active by about two orders of magnitude. The polyethylene produced is linear, as determined by NMR spectroscopy. Molecular structures of Ti(NCtBu2)3X (X = Cl, Cp, Ind) and Ti(NCtBu2)4 were determined by X-ray single crystal diffraction.  相似文献   

15.
16.
Complex [RuCl{κ3(N,N,N)-Tp}(PPh3)(PTA)] (κ3(N,N,N)-Tp = hydridotris(pyrazolyl)borate) containing the water-soluble phosphane 1,3,5-triaza-7-phosphatricyclo[3.3.1.13,7]decane (PTA) reacts with terminal alkynes producing to the corresponding neutral alkynyl complexes [Ru(CCR){κ3(N,N,N)-Tp}(PPh3)(PTA)] (R = Ph (1a), nBu (1b), 1-cyclopentenyl (1c), p-methoxyphenyl (1d), 6-methoxynaft-2-yl (1e)). When halide is extracted from complex [RuCl{κ3(N,N,N)-Tp}(PPh3)(PTA)] followed by treatment with propargyl alcohols, the corresponding allenylidene complexes [Ru{κ3(N,N,N)-Tp}(PPh3)(PTA)(CCCPh2)][X] (X = PF6 (2a), CF3SO3 (2b)) and [Ru{κ3(N,N,N)-Tp}(PPh3)(PTA)(CCCC12H8)][PF6] (3) result. Electrophilic attack on the complexes thus obtained leads chemoselectively to the alkynyl complexes [Ru(CCR){κ3(N,N,N)-Tp}(PPh3)(1-CH3-PTA)][CF3SO3] (R = Ph (4a), nBu (4b), and 1-cyclopentenyl (4c)) and to the dicationic allenylidene complexes [Ru{κ3(N,N,N)-Tp}(PPh3)(1-H-PTA)(CCCC12H8)][PF6]2 (5) and [Ru{κ3(N,N,N)-Tp}(PPh3)(1-CH3-PTA)(CCCPh2)][CF3SO3]2 (6).  相似文献   

17.
The compounds [MoCl(NAr)2R] (R=CH2CMe2Ph (1) or CH2CMe3(2); Ar=2,6-Pri2C6H3) have been prepared from [MoCl2(NAr)2(dme)] (dme=1,2-dimethoxyethane) and one equivalent of the respective Grignard reagent RMgCl in diethyl ether. Similarly, the mixed-imido complex [MoCl2(NAr)(NBut)(dme)] affords [MoCl(NAr)(NBut)(CH2CMe2Ph)] (3). Chloride substitution reactions of 1 with the appropriate lithium reagents afford the compounds [MoCp(NAr)2(CH2CMe2Ph)] (4) (Cp=cyclopentadienyl), [MoInd(NAr)2(CH2CMe2Ph)] (5) (Ind=Indenyl), [Mo(OBut)(NAr)2(CH2CMe 2Ph)] (6), [MoMe(NAr)2(CH2CMe2Ph)] (7), [MoMe(PMe3)(NAr)2(CH2CMe 2Ph)] (8) (formed in the presence of PMe3) and [Mo(NHAr)(NAr)2(CH2CMe2P h)](9). In the latter case, a by-product {[Mo(NAr)2(CH2CMe2Ph) ]2(μ-O)}(10) has also been isolated. The crystal structures of 1, 4, 5 and 10 have been determined. All possess distorted tetrahedral metal centres with cis near-linear arylimido ligands; in each case (except 5, for which the evidence is unclear) there are α-agostic interactions present.  相似文献   

18.
The novel bis(iminophosphorano)methanes CH2[P{NP(S)(OR)2}Ph2]2 (R = Ph (1a), Et (1b)) have been obtained by oxydation of dppm with the corresponding thiophosphorylated azides (RO)2P(S)N3. Deprotonation of 1a,b with KH generates the methanide species KCH[P{NP(S)(OR)2}Ph2]2 (R = Ph (2a), Et (2b)). The ruthenium(II) dimer [{Ru(η6-p-cymene)(μ-Cl)Cl}2] reacts with 2a,b to afford the cationic complexes [Ru(η6-p-cymene)(κ3-C,N,S-CH[P{NP(S)(OR)2}Ph2]2)]+ (R = Ph (3a), Et (3b)), via selective κ3-C,N,S-coordination of the bis(iminophosphorano)methanide anions to ruthenium. The structure of [Ru(η6-p-cymene)(κ3-C,N,S-CH[P{NP(S)(OEt)2}Ph2]2)][PF6] (3b) has been confirmed by single-crystal X-ray crystallography. Deprotonation of complexes 3a,b with NaH leads to the neutral carbene derivatives [Ru(η6-p-cymene)(κ2-C,N-C[P{NP(S)(OR)2}Ph2]2)] (R = Ph (4a), Et (4b)).  相似文献   

19.
The Rh(III)-thiolate complex [TpRh(SPh)2(MeCN)] (2; Tp = hydrotris(3,5-dimethylpyrazolyl)borate) readily undergoes substitution of MeCN by XyNC (Xy = 2,6-dimethylphenyl) to give the isocyanide complex [TpRh(SPh)2(XyNC)] (3), whereas reaction of 2 with terminal alkynes results in the formation of the rhodathiacyclobutene complex [TpRh(SPh){η2-CHCR(SPh)}] (4; R = aryl, alkyl). Molecular structures of 3 and 4 (R = CH2Ph) have been determined by single crystal X-ray diffraction. Complex 2 as well as [TpRh(cyclooctene)(MeCN)] have been found to catalyze regioselective addition of benzenethiol to terminal alkynes RCCH at 50 °C to give R(PhS)CCH2 in moderate to high yields. The above products are selectively formed when R = CH2Ph and n-C6H13, while cis-RCHCHSPh and RC(SPh)2CH3 are also obtained as by-products when R = p-MeOC6H4. Catalytic cycle involving 2 and 4 is proposed based on the mechanistic studies using NMR measurement.  相似文献   

20.
The present paper reports the unprecedented observation of a catalytic electrochemical proton reduction based on metallocumulene complexes. Manganese phenylvinylidene (η5-C5H5)(CO)(PPh3)MnCC(H)Ph (1) and diphenylallenylidene (η5-C5H5)(CO)2MnCCCPh2 (3) are shown to catalyze the reduction of protons from HBF4 into dihydrogen in CH2Cl2 or CH3CN media at −1.60 and −0.84 V (in CH3CN) vs. Fc, respectively. The working potential for 3 (−0.84 V vs. Fc in CH3CN) is the lowest reported to date for protonic acids reduction in non-aqueous media. The similar catalytic cycles disclosed here include the protonation of 1, 3 into the carbyne cations [(η5-C5H5)(CO)(PPh3)MnC-CH2Ph]BF4 ([2]BF4), [(η5-C5H5)(CO)2MnC-CHCPh2]BF4 ([4]BF4) followed by their reduction to the corresponding 19-electron radicals 2, 4, respectively. Both carbyne radicals undergo a rapid homolytic cleavage of the Cβ-H bond generating an H-radical producing molecular hydrogen with concomitant recovery of the neutral metallocumulenes thereby completing a catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号