首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrophoretically mediated microanalysis (EMMA), in combination with a partial filling technique and indirect or direct detection, is described for the study of enzymes reacting with the high mobility inorganic or organic anions as substrates or products. Part of the capillary is filled with a buffer optimized for the enzymatic reaction, the rest of the capillary with the background electrolyte being optimal for the separation of substrates and products. With haloalkane dehalogenase, chosen as a model enzyme, the enzymatic reaction was performed in a 20 mM glycine buffer (pH 8.6). Because of the wide substrate specificity of this enzyme, utilizing chlorinated as well as brominated substrates and producing either nonabsorbing chloride or absorbing bromide ions, two different background electrolytes and detection approaches were adopted. A 10 mM chromate-0.1 mM cetyltrimethylammonium bromide background electrolyte (pH 9.2) was used in combination with indirect detection and 20 mM beta-alanine-hydrochloric acid (pH 3.5) in combination with direct detection. The Michaelis constant (K(m)) of haloalkane dehalogenase for 1-bromobutane was determined. The K(m) values 0.59 mM estimated by means of indirect detection method and 0.17 mM by means of direct detection method were comparable with the value 0.13 mM estimated previously by gas chromatography.  相似文献   

2.
This paper describes a system for integration of a one-step-microscale chemical derivatization and analysis by a methodology known as electrophoretically mediated microanalysis (EMMA). Differential electrophoretic mobility between an analyte, reagent, and their product offers EMMA a unique capability to selectively carry out electrophoretic mixing, control product formation, and separation. This system was successfully applied to perform derivatization and separation of the multicomponent aminoglycoside antibiotic gentamicin using 1,2-phthalic dicarboxaldehyde and mercaptoacetic acid as labeling reagents. A multivariate approach based on central composite experimental design was used to optimize the derivative yield. Full automation of the derivatization and analytical procedure, high derivatization efficiency, high sample throughput, and precision are the excellent features of the present method. In addition, this methodology offers short analysis time, as well as selectivity and sensitivity suitable for impurities determination. Separation of gentamicin C1, C1a, C2, C2a, C2b, sisomicin, and several minor components was achieved. For the first time separation and identification of three impurities, namely garamine, 2-deoxystreptamine, and paromamine are described.  相似文献   

3.
A modified partial filling method for chiral separation of DL-lactic acid as the model chiral compound with vancomycin chloride as the chiral selector was developed by CE with contactless conductivity detection. Electrokinetic partial filling technique (EK-PFT) was used as an alternative method to the conventional hydrodynamic partial filling method. EK-PFT, in contrast to the hydrodynamic partial filling technique, allowed the removal of the chloride counterions from the chiral selector which otherwise led to poor sensitivity in conductivity detection. The baseline separation of DL-lactic acid as the model analyte was achieved in 5 min in a polyacrylamide-coated capillary. The best resolution was achieved by electrokinetic partial filling of vancomycin cations from the injection solution containing 5 mmol/L oxalate L-histidinium at pH 4.5 with 10 mmol/L vancomycin chloride. Computer simulation was used to explain the observed phenomena in the boundary between the inject vial and the capillary during the EK-PFT of vancomycin cations.  相似文献   

4.
Corrosion phenomena of Al-1 % Si bond wires, observed after life testing of certain transistors, are studied. The following information is derived from laboratory simulation tests: the kinetics of the corrosion process, information about the corrosion mechanism and critical parameters, especially the influence of the environmental gas and Si content and finally the identification of the corrosion products and their comparison with those found for the transistor. It is demonstrated, using a combination of several surface analytical techniques, that the A1 pitting corrosion is induced and enhanced by the presence of water as a transport medium and surface electrolyte in an oxygen-rich atmosphere, with chloride ions as a stimulating and activating species. The effect of 1 % Si in the wire consists in acceleration of the corrosion rate, and is probably due to grain boundary effects. All critical corrosion parameters could be traced in the transistor system by electron microscopy, laser microprobe mass analysis and residual gas (and moisture) analysis by mass spectrometry.  相似文献   

5.
An electrophoretically mediated microanalysis (EMMA) method has been developed for yeast alcohol dehydrogenase and quantification of reactant and product cofactors, NAD and NADH. The enzyme substrate ethanol (1% (v/v)) was added to the buffer (50 mM borate, pH 8.8). Results are presented for parallel capillary electrophoresis with a novel miniature UV area detector, with an active pixel sensor imaging an array of two or six parallel capillaries connected via a manifold to a single output capillary in a commercial CE instrument, allowing conversions with five different yeast alcohol dehydrogenase concentrations to be quantified in a single experiment.  相似文献   

6.
A chiral non-aqueous CE system with UV and mass spectrometric detection has been developed. The enantioseparation was promoted by diastereomeric complex (ion-pair) formation between the amines (e.g. salbutamol, atenolol) and the chiral selector, (-)-2,3:4,6-di-O-isopropylidene-2-keto-L-gulonic acid [(-)-DIKGA]. Different solvent mixtures were studied, as well as different concentrations of (-)-DIKGA and ammonium acetate in the background electrolyte. A partial filling technique was developed with a selector plug composed of (-)-DIKGA and ammonium acetate in a solvent mixture of methanol and 2-propanol. The separated enantiomers of pronethalol were detected by a Q-TOF MS system equipped with a sheath-flow electrospray ionization interface.  相似文献   

7.
An electrophoretically mediated microanalysis (EMMA) approach, used to perform on-line chemistry between two small molecules, has been characterized and optimized. The plug-plug type EMMA method involved electrophoretic mixing and subsequent reaction of nanoliter plugs of kanamycin-containing samples and 1,2-phthalic dicarboxaldehyde and mercaptoacetic acid within the confines of the capillary column, which acts as a microreactor. Analyses were performed by pressure-injecting a plug of kanamycin sandwiched in two reagent plugs. A potential of 375 Vcm(-1) was then applied to electrophoretically mix the two reactants, and an incubation time of up to 5 min allowed the reaction to proceed prior to the application of a separation potential of 588 Vcm(-1). UV detection was at 335 nm. The background electrolyte was 30 mM sodium tetraborate at pH 10.0, containing 16% of methanol. The method was validated in terms of linearity, limits of quantitation and detection, and precision. The method allows determination of kanamycin in bulk samples as a fully automated procedure.  相似文献   

8.
Kang J  Wistuba D  Schurig V 《Electrophoresis》2003,24(15):2674-2679
A fast and sensitive method is described by using vancomycin as a chiral additive for enantiomeric separation by capillary electrophoresis (CE). In order to overcome disadvantages associated with use of vancomycin as chiral additive in CE, several strategies including the dynamic coating technique, the co-electroosmotic flow technique, and the partial filling technique were employed sequentially in this method. Using the polycationic polymer hexadimethrine bromide (HDB) as a buffer additive, the capillary wall was dynamically coated with a thin film formed by the adsorbed HDB. Consequently, the adsorption of vancomycin onto the capillary wall was minimized via electrostatic repulsion between the coating of the capillary wall and the vancomycin molecule. In addition, the reversed electroosmotic flow (from cathode to anode) produced by the positively charged capillary wall migrates in the same direction of negatively charged analytes (co-electroosmotic flow electrophoresis). Thereby the electrophoretic mobility of negatively charged analytes were drastically accelerated leading to a short separation time of less than 3.4 min. The separation time was further reduced by the use of a short-end-injection technique. For example, the analysis time was achieved by as short as 55 s for a baseline separation of dansyl-alpha-amino-n-butyric acid. Concurrently, the partial filling technique was used to avoid the loss of detection sensitivity caused by the presence of vancomycin in the running buffer. The effect of several parameters, such as HDB concentration, buffer pH, plug length of the chiral selector, concentration of the chiral selector and applied voltage, on enantioselectivity were investigated toward optimization. Besides the advantage of a very short separation time, the method is characterized by high detection sensitivity, high selectivity, and high efficiency.  相似文献   

9.
Enantiomer separations were performed by capillary electrophoresis-mass spectrometry (CE-MS) with (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (18C6H4) as a chiral selector. In order to prevent the introduction of the nonvolatile chiral, selector, 18C6H4, into the nozzle of the CE-MS interface and/or the orifice plate, a partial filling technique was employed in this study. By the partial filling technique, the contamination caused by the nonvolatile chiral selector was avoided not only during the analysis but also during the washing of capillary with the separation solution prior to the run. Several racemic compounds having a primary amino group were successfully separated. Racemic 3-aminopyrrolidine and racemic alpha-amino-epsilon-caprolactam have no strong UV absorption, but such compounds were detected with a high sensitivity by MS detection. In this paper, the effects of the length of separation zone and those of the 18C6H4 concentration were described. As the length of the separation zone was longer or as the concentration of 18C6H4 was higher, the enantiomer resolution was enhanced more and more. However, the optimization of 18C6H4 concentration was practically enough to obtain the baseline separation.  相似文献   

10.
Using isothermal microcalorimetry, the growth power-time curves of three strains of Tetrahymena were determined at 28°C. Their Euclidean distances and cluster analysis diagram were obtained by using two thermokinetic parameters (r and Qlog), which showed that T. thermophila BF1 and T. thermophila BF5 had a closer relationship. Compared with the single molecular biomarker (ITS1) method, microcalorimetry wasmaybe a simpler, more sensitive andmore economic technique in the phylogenetic studies of Tetrahymena species.  相似文献   

11.
12.
Summary Indirect photometric and unsuppressed direct conductivity detection modes are examined using naphthalene mono-, di-, and tri-sulfonate as mobile phases for the separation of several anions such as F, Cl, NO2 , Br, NO3 , SO4=,I, and SCN using a commercial anion exchange column. With all three mobile phases, conductivity detection shows better sensitivities and detection limits than indirect photometry. Conductivity detection is 5 to 16 times more sensitive than indirect photometry for all analytes. Detection limits achieved using these mobile phases are, for example, 0.04 ng and 0.1 ng for chloride ion with conductivity and indirect photometry, respectively. Both detection modes give wide linear ranges extending from at least 100 ppm to the detection limit of each anion which is generally about 0.02 ppm. Sulfur oxide anions such as dithionate and tetrathionate are separated using flow programming with naphthalenetrisulfonate as the mobile phase in less than 20 minutes. With both detection modes, desired chromatographic performance of these three eluents is achieved without pH adjustment of the mobile phase.  相似文献   

13.
Summary Crotoxin (Crtx) is the main toxin of South American rattlesnake (Crotalus durissus terrificus) venom. Research on antitumoral drugs has demonstrated the potential use of Crtx as tumour reducing agent. Tissue distribution studies are very important for clinical use and 99mTc-labeling is a very convenient method for studies related to biodistribution. The aim of the present study was to label Crtx with 99mTc keeping its biological activity for use in biodistribution and binding studies. High labeling yield was obtained using stannous chloride and sodium borohydride. Results demonstrated that biological activity of 99mTc-Crtx was preserved and confirmed kidneys as the target organ. Biological activities of unlabeled and 99mTc-labeled Crtx were evaluated after labeling. 99mTc-Crtx can be a useful tool for imaging and binding studies.  相似文献   

14.
A fiberoptic biosensor has been developed for the specific and alternate determination of ATP, ADP and AMP. The sensing layer is arranged by compartmentalizing the tri-enzyme sequence adenylate kinase – creatine kinase – firefly luciferase. The two kinases are covalently co-immobilized on a collagen membrane, whereas firefly luciferase is bound alone on a separate one. For the specific determination of each adenylic nucleotide, three particular reaction media are needed with which flow-injection analysis can be performed in the 2.5–2500 pmol for ATP, 10–2500 pmol for ADP and 25–5000 pmol for AMP linear ranges. For ten consecutive injections of 100 pmol ATP, 100 and 250 pmol ADP, the RSD were 3.5, 2.0 and 2.2%, respectively. When the three nucleotides are present simultaneously in the same sample, the transient inhibition of adenylate-kinase activity by adenosine 5′-monosulphate enables their specific and alternate measurement.  相似文献   

15.
The principles for the determination of conditional association constants of enantiomers by capillary zone electrophoresis employing a partial filling technique (PFT) using methyl-beta-cyclodextrin as chiral selector is presented. Orciprenaline was used as a model compound. Partial filling is a separation technique, where different lengths of the chiral selector solution are introduced into the capillary to a final zone length shorter than the effective length of the capillary, prior to application of the solutes. Lengthening of the separation zone results in improving enantioresolution in addition to decreasing electrophoretic mobility of the enantiomers, because of longer interaction time between the solute and chiral selector. The degree of the reduction in electromobility depends on the affinity of the solute to the chiral selector, i.e. strength of the complex formed between the solute and cyclodextrin. The decrease in the electrophoretic mobility with increasing length of the separation zone is used for determination of the association constant. The association constants of the enantiomers of orciprenaline and the chiral selector were evaluated from the slope of the plot, observed electrophoretic mobility versus the ratio between the length of the separation zone and the effective length of the capillary. It was found that the association constants were independent of the chiral selector concentration. The mean values were 110 M(-1) and 160 M(-1) for respective enantiomer. Constants obtained by a conventional CE technique were in good agreement with those from the PFT experiments. The highest enantioselectivityy was obtained when about 50% of the solute was distributed to the selector phase.  相似文献   

16.
We prepared thrombin-binding aptamer-conjugated gold nanoparticles (TBA-Au NPs) through a molecularly imprinted (MP) approach, which provide highly efficient inhibition activity toward the polymerization of fibrinogen. Au NPs (diameter, 13 nm), 15-mer thrombin-binding aptamer (TBA(15)) with different thymidine linkers, and 29-mer thrombin-binding aptamer (TBA(29)) with different thymidine linkers (Tn) in the presence of thrombin (Thr) as a template were used to prepare MP-Thr-TBA(15)/TBA(29)-Tn-Au NPs. Thrombin molecules were then removed from Au NPs surfaces by treating with 100 mM Tris-NaOH (pH ca. 13.0) to form MP-TBA(15)/TBA(29)-Tn-Au NPs. The length of the thymidine linkers and TBA density on Au NPs surfaces have strong impact on the orientation, flexibility, and stability of MP-TBA(15)/TBA(29)-Tn-Au NPs, leading to their stronger binding strength with thrombin. MP-TBA(15)/TBA(29)-T(15)-Au NPs (ca. 42 TBA(15) and 42 TBA(29) molecules per Au NP; 15-mer thymidine on aptamer terminal) provided the highest binding affinity toward thrombin with a dissociation constant of 5.2 × 10(-11) M. As a result, they had 8 times higher anticoagulant (inhibitory) potency relative to TBA(15)/TBA(29)-T(15)-Au NPs (prepared in the absence of thrombin). We further conducted thrombin clotting time (TCT) measurements in plasma samples and found that MP-TBA(15)/TBA(29)-T(15)-Au NPs had greater anticoagulation activity relative to four commercial drugs (heparin, argatroban, hirudin, and warfarin). In addition, we demonstrated that thrombin induced the formation of aggregates from MP-TBA(15)-T(15)-Au NPs and MP-TBA(29)-T(15)-Au NPs, thereby allowing the colorimetric detection of thrombin at the nanomolar level in serum samples. Our result demonstrates that our simple molecularly imprinted approach can be applied for preparing various functional nanomaterials to control enzyme activity and targeting important proteins.  相似文献   

17.
The reaction mechanism for the biomimetic synthesis of tryptophan from indole and serine in the presence of Ac2O in AcOH was investigated. Although the time‐course 1H‐NMR spectra of the reaction of 5‐methoxyindole with N‐acetylserine were measured in the presence of (CD3CO)2O in CD3CO2D, the reactive intermediate could not be detected. This reaction was conducted without 5‐methoxyindole in order to elucidate the reactive intermediate, but the intermediate could not be isolated from the reaction mixture. Since the intermediate would be expected to have a very short life time, and therefore be very difficult to detect by conventional analytical methods, the structure of the intermediate was elucidated using a 2D‐NMR technique, diffusion‐ordered spectroscopy (DOSY). Two intermediates were detected and confirmed to be 2‐methyl‐4‐methyleneoxazol‐5(4H)‐one and 2‐methyl‐4‐hydroxymethyloxazol‐5(4H)‐one. The present results demonstrated that DOSY is a powerful tool for the detection of unstable intermediates. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
Time-resolved study of intramolecular fluorescence quenching in a 9,10-dimethylanthracene derivative which has a CBr3 group attached to it by a chain composed of 11 atoms provides the rate of intramolecular collision between these two groups since it is shown that the bimolecular quenching of the fluorescence of 9,10-dimethylanthracene by tribromoacetic acid or by its ester takes place on every encounter.  相似文献   

19.
Single-nucleotide polymorphisms (SNPs) are the most common form of DNA sequence variation. There is a strong interest from both academy and industry to develop rapid, sensitive and cost effective methods for SNP detection. Here we report a novel structural concept for DNA detection based on fluorescence dequenching upon hybridization. The so-called "twin probe" consists of a central fluorene derivative as fluorophore to which two identical oligonucleotides are covalently attached. This probe architecture is applied in homogeneous hybridization assays with subsequent fluorescence spectroscopic analysis. The bioorganic hybrid structure is well suited for sequence specific DNA detection and even SNPs are identified with high efficiency. Additionally, the photophysical properties of the twin probe were investigated. The covalent attachment of two single stranded oligonucleotides leads to strong quenching of the central fluorescence dye induced by the nucleobases. The twin probe is characterized by supramolecular aggregate formation accompanied by red-shifted emission and broad fluorescence spectra.  相似文献   

20.
Kang J  Yin XB  Yang X  Wang E 《Electrophoresis》2005,26(9):1732-1736
An electrochemiluminescence (ECL) inhibition method was developed as an indirect detection method for the determination of dopamine and epinephrine separated by capillary electrophoresis (CE). When the concentration of Ru(bpy)(3) (2+) was 50 muM diluted by 50 mM phosphate (pH 8.5) in the cell and 0.5 M tripropylamine (TPA) was added to the running buffer (10 mM phosphate, pH 9.0), an inhibition of ECL of the Ru(bpy)(3) (2+)/TPA system by the analytes was observed. Under the optimized conditions, the relative standard deviations of migration time and negative peak area were less than 1% and 3%, respectively, for 1 microM dopamine or 1 microM epinephrine (n = 10). Linear ranges of 0.1-10 microM for both analytes and the detection limits (signal-to-noise ratio S/N = 3) of 10 nM for dopamine and 30 nM for epinephrine were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号