首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We develop the axisymmetric Synthetic Schlieren technique to study the wake of a microscale sphere settling through a density stratification. A video-microscope was used to magnify and image apparent displacements of a micron-sized random-dot pattern. Due to the nature of the wake, density gradient perturbations in the horizontal greatly exceed those in the vertical, requiring modification of previously developed axisymmetric techniques. We present results for 780 and 383 μm spheres, and describe the limiting role of noise in the system for a 157 μm sphere. This technique can be instrumental in understanding a range of ecological and environmental oceanic processes on the microscale.
King-Yeung Yick (Corresponding author)Email:
Roman StockerEmail:
Thomas PeacockEmail:
  相似文献   

2.
Two- and three-dimensional flows in nearly cuboidal cavities are investigated experimentally. A tight cavity is formed in the gap between two long and parallel cylinders of large radii by adding rigid top, bottom, and end walls. The cross-section perpendicular to the axes of the cylinders is nearly rectangular with aspect ratio Γ. The axial aspect ratio Λ > 10 is large to suppress end-wall effects. The fluid motion is driven by independent and steady rotation of the cylinders about their axes which defines two Reynolds numbers Re 1,2. Stability boundaries of the nearly two-dimensional steady flow have been determined as functions of Re 1,2 for Γ = 0.76 and Γ = 1. Up to six different three-dimensional supercritical modes have been identified. The critical thresholds for the onset of most of the three-dimensional modes, three of which have been observed for the first time, agree well with corresponding linear-stability calculations. Particular attention is paid to the flow for Γ = 1 under symmetric and parallel wall motion. In that case the basic flow consists of two mirror symmetric counter-rotating parallel vortices. They become modulated in span-wise direction as the driving increases. Detailed LDV measurements of the supercritical three-dimensional velocity field and the bifurcation show an excellent agreement with numerical simulations.
Tanja Siegmann-Hegerfeld (Corresponding author)Email:
Stefan AlbensoederEmail:
Hendrik C. KuhlmannEmail:
  相似文献   

3.
An investigation of the flow over a three-dimensional (3-D) double backward-facing step is presented using a combination of both quantitative measurements from a particle image velocimetry (PIV) system and qualitative oil-flow visualizations. The arrangement of the PIV instrument allows for snap-shots of the (x, y) and (y, z) planes at various axial and spanwise positions. The measurements illustrate characteristics that are found in both two-dimensional (2-D) backward-facing steps and 3-D flows around wall mounted cubes. In particular, the development of a horseshoe vortex is found after each step alongside other vortical motions introduced by the geometry of the model. Large turbulence levels are found to be confined to a region in the center of the backstep; their mean square levels being much larger than what has been observed in 2-D backward-facing steps. The large turbulent fluctuations are attributed to a quasi-periodic shedding of the horseshoe vortex as it continuously draws energy from the spiral nodes of separation, which form to create the base of the horseshoe vortex. A combination of effects including the shedding of the first horseshoe vortex, the horizontal entrainment of air and the presence of two counter rotating vortices initiated at reattachment, are shown to cause the steering vector of the flow to jettison away from the surface in the first redeveloping region and along the center at z/h = 0. Oil-flow visualizations confirm these observations.
C. E. Tinney (Corresponding author)Email:
L. S. UkeileyEmail:
  相似文献   

4.
We have developed and validated a new adaptive method, particle tracking velocimetry and accelerometry (PTVA), to measure velocity and acceleration from the post-processing of particle tracking (PT) data. This method is shown to be more accurate than non-adaptive methods based on PT: errors are about six times smaller on velocity measurements and about four times smaller on acceleration ones. We apply this method to a turbulent-like flow generated and controlled in the laboratory. Taking advantage of the Eulerian repeatability of our multi-scale laminar flow, we are able to extract the acceleration field, a, and all terms of Navier–Stokes equation. To complete this we extract u·a and ∇·a fields. We finally compare the probability density function of the acceleration components of our turbulent-like flow with one of the highly turbulent flows and show that they are similar. The quality of these PTVA results and their robustness (in particular to local convection) are extremely encouraging. This method allows access to a deeper insight into the physic of turbulent-like flows and its high accuracy may apply to a broader range of flows.
Lionel RossiEmail:
  相似文献   

5.
This paper reports laser-Doppler measurements of the mean flow and turbulence stresses in a swirling pipe flow. Experiments were carried out under well-controlled laboratory conditions in a refractive index-matched pipe flow facility. The results show pronounced asymmetry in mean and fluctuating quantities during the downstream decay of the swirl. Experimental data reveal that the swirl significantly modifies the anisotropy of turbulence and that it can induce explosive growth of the turbulent kinetic energy during its decay. Anisotropy invariant mapping of the turbulent stresses shows that the additional flow deformation imposed by initially strong swirling motion forces turbulence in the core region to tend towards the isotropic two-component state. When turbulence reaches this limiting state it induces rapid production of turbulent kinetic energy during the swirl decay.
J. Jovanović (Corresponding author)Email:
F. DurstEmail:
  相似文献   

6.
This work aims to develop a process for controlling a cylinder wake, especially the von Karman vortex street, in such way so as to drastically reduce the drag coefficient. A new technique for influencing the cylinder wake is proposed in the present experimental study. The flow around a circular cylinder is perturbed by temporarily changing the cylinder diameter. Experiments have been performed for Reynolds numbers in the range Re=9,500 to Re=31,500. Three values of the controlling frequencies are considered: fs1=0.41, fs2=0.54 and fs3=0.73, in addition to the stationary case corresponding to a non-deformable cylinder, fs0=0. The visualisation flow shows that the pulsing motion of the cylinder walls greatly influences both the near and far wake dynamics. A decrease of the drag is expected.
OualliEmail: Fax: +213-2186-3204
  相似文献   

7.
A novel compact low-frequency oscillating hot-wire (OHW) anemometer is calibrated in a custom-built wind tunnel. Laser Doppler anemometry is used for reference velocity measurements, phase-locked with the oscillating wire. Three probe designs are calibrated, examining the influence of prong shape on the wake contamination. Results for two oscillation amplitudes and several frequencies are discussed. Through non-dimensional analysis, the optimum probe design and operating parameters are extracted. The OHW features a maximum measurable negative velocity of −1.0 m/s which is comparable to existing oscillating and flying hot-wire anemometers. The compact OHW can be applied to reversing flow in confined geometries such as flow in exhaust systems.
Tim PersoonsEmail: Phone: +32-16-322511Fax: +32-16-322985
  相似文献   

8.
Simultaneous multi-point hotwire measurements are used to investigate the three-dimensional wake topology of a square cylinder at high Reynolds numbers. Wavelet techniques are applied to detect the flow structures and to inquire on the validity or extension of previously proposed low Reynolds number topological models to turbulent wakes. Our results suggest that a flow topological model similar to the horizontal perturbation model proposed by Meiburg and Lasheras (J Fluid Mech 190:1–37, 1988) but with alternate rib cuts in the horizontal plane is plausible for the intermediate wake topology.
H. HanganEmail: Phone: +1-519-6613338Fax: +1-519-6613339
  相似文献   

9.
An iterative procedure, based on the proper orthogonal decomposition (POD), first proposed by Everson and Sirovich (J Opt Soc Am A 12(8):1657–1664, 1995) is applied to marred particle image velocimetry (PIV) data of shallow rectangular cavity flow at Mach 0.19, 0.28, 0.38, and 0.55. The procedure estimates the POD modes while simultaneously estimating the missing vectors in the PIV data. The results demonstrate that the absolute difference between the repaired vectors and the original PIV data approaches the experimental uncertainty as the number of included POD modes is increased. The estimation of the dominant POD modes is also shown to converge by examining the subspace spanned by the POD eigenfunctions.
Nathan E. Murray (Corresponding author)Email:
Lawrence S. UkeileyEmail:
  相似文献   

10.
This work is an attempt to test the concept of the hydrodynamic charge (analogous to the electric charge in electromagnetism) in the simple case of a coherent structure such as the Burgers vortex. We provide experimental measurements of both the so-called Lamb vector and its divergence (the charge) by two-dimensional particles images velocimetry. In addition, we perform a Helmholtz–Hodge decomposition of the Lamb vector in order to explore its topological features. We compare the charge with the well-known Q-criterion in order to assess its interest in detecting and characterizing coherent structure. Usefulness of this concept in studies of vortex dynamics is demonstrated.
Germain RousseauxEmail:
  相似文献   

11.
The understanding of the physics of flapping flight has long been limited due to the obvious experimental difficulties in studying the flow field around real insects. In this study the time-dependent three-dimensional velocity field around a flapping wing was measured quantitatively for the first time. This was done using a dynamically-scaled wing moving in mineral oil in a pattern based on the kinematics obtained from real insects. The periodic flow is very reproducible, due to the relatively low Reynolds number and precise control of the wing. This repeatability was used to reconstruct the full evolving flow field around the wing from separate stereoscopic particle image velocimetry measurements for a number of spanwise planes and time steps. Typical results for two cases (an impulsive start and a simplified flapping pattern) are reported. Visualizations of the obtained data confirm the general picture of the leading-edge vortex that has been reported in recent publications, but allow a refinement of the detailed structure: rather than a single strand of vorticity, we find a stable pair of counter-rotating structures. We show that the data can also be used for quantitative studies, such as lift and drag prediction.
C. Poelma (Corresponding author)Email: Phone: +31-15-2782620
W. B. DicksonPhone: +1-626-3955775
  相似文献   

12.
We introduce the three-dimensional measurement technique (XPIV) based on a Particle Image Velocimetry (PIV) system. The technique provides three-dimensional and statistically significant velocity data. The main principle of the technique lies in the combination of defocus, stereoscopic and multi-plane illumination concepts. Preliminary results of the turbulent boundary layer in a flume are presented. The quality of the velocity data is evaluated by using the velocity profiles and relative turbulent intensity of the boundary layer. The analysis indicates that the XPIV is a reliable experimental tool for three-dimensional fluid velocity measurements.More information at:
G. HetsroniEmail:
  相似文献   

13.
Recent experimental techniques used to investigate shear banding are reviewed. After recalling the rheological signature of shear-banded flows, we summarize the various tools for measuring locally the microstructure and the velocity field under shear. Local velocity measurements using dynamic light scattering and ultrasound are emphasized. A few results are extracted from current works to illustrate open questions and directions for future research.
Sébastien MannevilleEmail:
  相似文献   

14.
Comment on the Clauser chart method for determining the friction velocity   总被引:1,自引:0,他引:1  
A known difficulty with using the Clauser chart method to determine the friction velocity in wall bounded flows is that it assumes, a priori, a logarithmic law for the mean velocity profile. Using both experimental and DNS data in the literature, this note explicitly shows how friction velocities obtained using the Clauser chart method can potentially mask subtle Reynolds-number-dependent behavior.
Tie WeiEmail:
  相似文献   

15.
We present an alternative method of producing density stratifications in the laboratory based on the ‘double-tank’ method proposed by Oster (Sci Am 213:70–76, 1965). We refer to Oster’s method as the ‘forced-drain’ approach, as the volume flow rates between connecting tanks are controlled by mechanical pumps. We first determine the range of density profiles that may be established with the forced-drain approach other than the linear stratification predicted by Oster. The dimensionless density stratification is expressed analytically as a function of three ratios: the volume flow rate ratio n, the ratio of the initial liquid volumes λ and the ratio of the initial densities ψ. We then propose a method which does not require pumps to control the volume flow rates but instead allows the connecting tanks to drain freely under gravity. This is referred to as the ‘free-drain’ approach. We derive an expression for the density stratification produced and compare our predictions with saline stratifications established in the laboratory using the ‘free-drain’ extension of Oster’s method. To assist in the practical application of our results we plot the region of parameter space that yield concave/convex or linear density profiles for both forced-drain and free-drain approaches. The free-drain approach allows the experimentalist to produce a broad range of density profiles by varying the initial liquid depths, cross-sectional and drain opening areas of the tanks. One advantage over the original Oster approach is that density profiles with an inflexion point can now be established.
M. EconomidouEmail:
G. R. Hunt (Corresponding author)Email:
  相似文献   

16.
Flow within a large-aspect-ratio cylindrical vortex cell has been explored experimentally. The flow was driven by a shear layer above an opening in the cylinder circumference. Reynolds numbers, based on the length of the opening and the velocity just outside it, exceed 50,000. It is shown that the expected solid body rotation within the cell, with a constant velocity gradient across most of the core, is qualitatively present, but is significantly distorted by three-dimensional effects. Nonetheless, turbulence levels within the core are very low, only rising to levels similar to those in regular turbulent shear flows within the driving mixing layer itself and the cell-wall boundary layers.
Ian CastroEmail:
  相似文献   

17.
A random synthetic jet array driven turbulence tank   总被引:1,自引:0,他引:1  
We measure the flow above an array of randomly driven, upward-facing synthetic jets used to generate turbulence beneath a free surface. Compared to grid stirred tanks (GSTs), this system offers smaller mean flows at equivalent turbulent Reynolds numbers with fewer moving parts.
Evan A. VarianoEmail:
  相似文献   

18.
Variational optical flow estimation for particle image velocimetry   总被引:1,自引:1,他引:1  
We introduce a novel class of algorithms for evaluating PIV image pairs. The mathematical basis is a continuous variational formulation for globally estimating the optical flow vector fields over the whole image. This class of approaches has been known in the field of image processing and computer vision for more than two decades but apparently has not been applied to PIV image pairs so far. We pay particular attention to a multi-scale representation of the image data so as to cope with the quite specific signal structure of particle image pairs. The experimental evaluation shows that a prototypical variational approach competes in noisy real-world scenarios with three alternative approaches especially designed for PIV-sequence evaluation. We outline the potential of the variational method for further developments.The publications of the CVGPR Group are listed under .
P. RuhnauEmail:
H. NobachEmail:
  相似文献   

19.
An apparatus is described for the measurement of unsteady thrust and propulsive efficiency produced by biologically inspired oscillating hydrodynamic propulsors. Force measurement is achieved using a strain-gauge-based force transducer, augmented with a lever to amplify or attenuate the applied force and control the measurement sensitivity and natural frequency of vibration. The lever can be used to tune the system to a specific application and it is shown that, using the lever, the stiffness can be made to increase more rapidly than the measurement sensitivity decreases. Efficiency is computed from measurements of the time-averaged power imparted to the fluid. The apparatus is applied to two different propulsors, demonstrating the versatility of the system; wake visualizations are examined, which provide insight into the physical mechanisms of efficient propulsion.
James H. J. BuchholzEmail: Email:
  相似文献   

20.
A technique for obtaining accurate, high (spatial) resolution measurements of sediment redeposition levels is described. In certain regimes, the method may also be employed to provide measurements of sediment layer thickness as a function of time. The method uses a uniform light source placed beneath the layer, consisting of transparent particles, so that the intensity of light at a point on the surface of the layer can be related to the depth of particles at that point. A set of experiments, using the impact of a vortex ring with a glass ballotini particle layer as the resuspension mechanism, are described to test and illustrate the technique.
R. J. MunroEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号