首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A semi-empirical model of vortex ring formation during exhaustion of a pulsed submerged jet from a circular orifice is presented. Formulas for determining the parameters of the vortex ring, depending on the conditions of formation of the latter, are derived. The calculated characteristics of the vortex ring as functions of criteria determining the vortex formation process are demonstrated to be in good agreement with experimental data. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 6, pp. 25–36, November–December, 2008.  相似文献   

2.
Experimental investigation of vortex rings impinging on inclined surfaces   总被引:1,自引:0,他引:1  
Vortex–ring interactions with oblique boundaries were studied experimentally to determine the effects of plate angle on the generation of secondary vorticity, the evolution of the primary vorticity and secondary vorticity as they interact near the boundary, and the associated energy dissipation. Vortex rings were generated using a mechanical piston-cylinder vortex ring generator at jet Reynolds numbers 2,000–4,000 and stroke length to piston diameter ratios (L/D) in the range 0.75–2.0. The plate angle relative to the initial axis of the vortex ring ranged from 3 to 60°. Flow analysis was performed using planar laser-induced fluorescence (PLIF), digital particle image velocimetry (DPIV), and defocusing digital particle tracking velocimetry (DDPTV). Results showed the generation of secondary vorticity at the plate and its subsequent ejection into the fluid. The trajectories of the centers of circulation showed a maximum ejection angle of the secondary vorticity occurring for an angle of incidence of 10°. At lower incidence angles (<20°), the lower portion of the ring, which interacted with the plate first, played an important role in generation of the secondary vorticity and is a key reason for the maximum ejection angle for the secondary vorticity occurring at an incidence angle of 10°. Higher Reynolds number vortex rings resulted in more rapid destabilization of the flow. The three-dimensional DDPTV results showed an arc of secondary vorticity and secondary flow along the sides of the primary vortex ring as it collided with the boundary. Computation of the moments and products of kinetic energy and vorticity magnitude about the centroid of each vortex ring showed increasing asymmetry in the flow as the vortex interaction with the boundary evolved and more rapid dissipation of kinetic energy for higher incidence angles.  相似文献   

3.
We present a (noncanonical) Hamiltonian model for the interaction of a neutrally buoyant, arbitrarily shaped smooth rigid body with N thin closed vortex filaments of arbitrary shape in an infinite ideal fluid in Euclidean three-space. The rings are modeled without cores and, as geometrical objects, viewed as N smooth closed curves in space. The velocity field associated with each ring in the absence of the body is given by the Biot–Savart law with the infinite self-induced velocity assumed to be regularized in some appropriate way. In the presence of the moving rigid body, the velocity field of each ring is modified by the addition of potential fields associated with the image vorticity and with the irrotational flow induced by the motion of the body. The equations of motion for this dynamically coupled body-rings model are obtained using conservation of linear and angular momenta. These equations are shown to possess a Hamiltonian structure when written on an appropriately defined Poisson product manifold equipped with a Poisson bracket which is the sum of the Lie–Poisson bracket from rigid body mechanics and the canonical bracket on the phase space of the vortex filaments. The Hamiltonian function is the total kinetic energy of the system with the self-induced kinetic energy regularized. The Hamiltonian structure is independent of the shape of the body, (and hence) the explicit form of the image field, and the method of regularization, provided the self-induced velocity and kinetic energy are regularized in way that satisfies certain reasonable consistency conditions.   相似文献   

4.
Particle image velocimetry measurements and time-resolved visualization are used for the reconstruction of the Kelvin–Helmholtz vortex passing in the near field of a round jet and of a lobed jet. For the round jet, the entrainment is produced in the braid region, where streamwise structures develop. In the Kelvin–Helmholtz ring, entrainment is dramatically affected by the attenuation of the streamwise structures. As for the lobed jet, the special geometry introduces a transverse shear leading to a breakdown of the Kelvin–Helmholtz structures into “ring segments.” Streamwise structures continuously develop at the resulting discontinuity regions and control the lobed jet self-induction. In this case, the entrainment rate is less affected by the primary structures dynamics.  相似文献   

5.
Characteristics of high Mach number compressible vortex ring generated at the open end of a short driver section shock tube is studied experimentally using high-speed laser sheet-based flow visualization. The formation mechanism and the evolution of counter rotating vortex ring (CRVR) formed ahead of the primary vortex ring are studied in details for shock Mach number (M) 1.7, with different driver section lengths. It has been observed that the strength of the embedded shock, which appears at high M, increases with time due to the flow expansion in the generating jet. Strength of the embedded shock also varies with radius; it is strong at smaller radii and weak at larger radii; hence, it creates a velocity gradient ahead of the embedded shock. At critical Mach number (M c ≥ 1.6), this shear layer rolls up and forms a counter rotating vortex ring due to Biot-Savart induction of the vortex sheet. For larger driver section lengths, the embedded shock and the resultant shear layer persists for a longer time, resulting in the formation of multiple CRVRs due to Kelvin–Helmholtz type instability of the vortex sheet. CRVRs roll over the periphery of the primary vortex ring; they move upstream due to their self-induced velocity and induced velocity imparted by primary ring, and interact with the trailing jet. Formation of these vortices depends strongly upon the embedded shock strength and the length of the generating jet. Primary ring diameter increases rapidly during the formation and the evolution of CRVR due to induced velocity imparted on the primary ring by CRVR. Induced velocity of CRVR also affects the translational velocity of the primary ring considerably.  相似文献   

6.
The development of a buoyant vortex ring in the near field was examined experimentally, and the findings were compared with those of a non-buoyant ring with a similar Reynolds number. The experiments were performed in a water tank, and the vortices were produced by a cylindrical tube of aspect ratio 2. Laser sheet flow visualization and PIV measurements were carried out. In the near field, the initial column of the buoyant fluid breaks down due to the presence of Rayleigh–Taylor instability at the buoyant fluid interface. Subsequently, a large diameter vortex ring with a large spreading rate, compared with the non-buoyant ring, emerges. The celerity of buoyant vortex continued to decrease throughout the range examined, in contrast to the constant celerity of the non-buoyant ring. The vorticity in the core of buoyant and non-buoyant vortex rings is symmetric and has a Gaussian distribution. However, the buoyant vortex ring evolves into a thin core ring, whereas the non-buoyant ring becomes a thick core ring shortly after the ring formation. This difference is brought on by the rapid entrainment and the significant growth of the buoyant ring following the breakup of the initial formation.  相似文献   

7.
Exploratory measurements of the effect of a stable continuous vertical stratification on horizontally propagating vortex rings show that the rings are subject to a stratification induced instability and subsequent collapse, which forms a well mixed intrusion. For initial ring Froude numbersF 0=U 0/Nd 0=1.0–2.0, instability and collapse occurs when the ring Froude number has decreased to a value in the range 0.6–1.0.  相似文献   

8.
To obtain practical schemes of vortex–flame interactions, a series of organized eddies formed in the plane premixed shear layer is investigated, instead of a single vortex ring or a single vortex tube. The plane premixed shear layer is first formed between two parallel uniform propane–air mixture streams. For getting clear qualitative pictures of vortex–flame interactions in the plane premixed shear layer, two extreme ignition points are assigned; one is assigned at the center of an organized eddy where the vortex motion plays an important role, the other at the midpoint between two adjacent organized eddies where the rolling-up motion prevails. A premixed flame is initiated by an electric discharge at one of the two assigned points and propagates either in the large scale organized eddy or along the interface between two uniform mixture streams. Propagation and deformation processes of the flame are observed using the simultaneously two-directional and high-speed Schlieren photography. The tangential velocity of organized eddy and the equivalence ratio of premixed shear flow are varied as two main parameters. The outline of propagating flame after the midpoint ignition is numerically analyzed by superposing the flame propagation having a constant burning velocity on the vortex flow field simulated with the discrete vortex method. The results obtained show that there exists another type of vortex–flame interaction in the plane shear layer in addition to the vortex bursting, and that it is caused by the rolling-up motion particular to the coherent structure in the plane shear layer and is simply named the vortex boosting. It is qualitatively concluded therefore that, in the ordinary turbulent premixed flames formed in the plane premixed shear layer, these two fundamental vortex-flame interactions get tangled with each other to augment the propagation velocity. An empirical expression which qualitatively takes into account of the effects of both vortex and chemical properties is finally proposed.  相似文献   

9.
This study utilizes a U-shape platform device to generate a single cavitation bubble for a detailed analysis of the flow field characteristics and the cause of the counter jet during the process of bubble collapse caused by sending a pressure wave. A high speed camera is used to record the flow field of the bubble collapse at different distances from a solid boundary. It is found that a Kelvin–Helmholtz vortex is formed when a liquid jet penetrates the bubble surface after the bubble is compressed and deformed. If the bubble center to the solid boundary is within one to three times the bubble’s radius, a stagnation ring will form on the boundary when impinged by the liquid jet. The fluid inside the stagnation ring will be squeezed toward the center of the ring to form a counter jet after the bubble collapses. At the critical position, where the bubble center from the solid boundary is about three times the bubble’s radius, the bubble collapse flow will vary. Depending on the strengths of the pressure waves applied, the collapse can produce a Kelvin–Helmholtz vortex, the Richtmyer–Meshkov instability, or the generation of a counter jet flow. If the bubble surface is in contact with the solid boundary, the liquid jet can only move inside-out without producing the stagnation ring and the counter jet; thus, the bubble collapses along the radial direction. The complex phenomenon of cavitation bubble collapse flows is clearly manifested in this study.  相似文献   

10.
When Bose–Einstein condensates are rotated sufficiently fast, a giant vortex phase appears, that is, the condensate becomes annular with no vortices in the bulk but a macroscopic phase circulation around the central hole. In a former paper (Correggi et al. in Commun Math Phys 303:451–308, 2011) we have studied this phenomenon by minimizing the two-dimensional Gross–Pitaevskii (GP) energy on the unit disc. In particular, we computed an upper bound to the critical speed for the transition to the giant vortex phase. In this paper we confirm that this upper bound is optimal by proving that if the rotation speed is taken slightly below the threshold, there are vortices in the condensate. We prove that they gather along a particular circle on which they are uniformly distributed. This is done by providing new upper and lower bounds to the GP energy.  相似文献   

11.
The results of a numerical investigation of the effect of thermal energy supply on a swirling viscous heat-conducting gas flow in a subsonic cocurrent stream are presented. The initial stage of development of the swirling flow in the neighborhood of the vortex axis with constant circulation in the outer flow region is considered for two different distributions of the streamwise velocity vector component which simulate a swirling jet-type flow and a wake flow with a streamwise velocity deficit. The effect of local volume energy supply in the neighborhood of the vortex axis, the circulation of the azimuthal velocity component, and the longitudinal pressure gradient in the inviscid stream on the development of the swirling flow and the process of breakdown of cocurrent vortex flows is investigated. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 47–53, November–December, 1998. The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 96-01-00586).  相似文献   

12.
The aerodynamic interaction between the contralateral wings and between the body and wings of a model insect are studied, by using the method of numerically solving the Navier-Stokes equations over moving overset grids, under typical hovering and forward flight conditions. Both the interaction between the contralateral wings and the interaction between the body and wings are very weak, e.g. at hovering, changes in aerodynamic forces of a wing due to the present of the other wing are less than 3% and changes in aerodynamic forces of the wings due to presence of the body are less than 2%. The reason for this is as following. During each down- or up-stroke, a wing produces a vortex ring, which induces a relatively large jet-like flow inside the ring but very small flow outside the ring. The vortex rings of the left and right wings are on the two sides of the body. Thus one wing is outside vortex ring of the other wing and the body is outside the vortex rings of the left and right wings, resulting in the weak interactions.  相似文献   

13.
We have used a third-order essentially non-oscillatory method to obtain numerical shadowgraphs for investigation of shock–vortex interaction patterns. To search different interaction patterns, we have tested two vortex models (the composite vortex model and the Taylor vortex model) and as many as 47 parametric data sets. By shock–vortex interaction, the impinging shock is deformed to a S-shape with leading and lagging parts of the shock. The vortex flow is locally accelerated by the leading shock and locally decelerated by the lagging shock, having a severely elongated vortex core with two vertices. When the leading shock escapes the vortex, implosion effect creates a high pressure in the vertex area where the flow had been most expanded. This compressed region spreads in time with two frontal waves, an induced expansion wave and an induced compression wave. They are subsonic waves when the shock–vortex interaction is weak but become supersonic waves for strong interactions. Under a intermediate interaction, however, an induced shock wave is first developed where flow speed is supersonic but is dissipated where the incoming flow is subsonic. We have identified three different interaction patterns that depend on the vortex flow regime characterized by the shock–vortex interaction.   相似文献   

14.
Separated shear layer of blunt circular cylinder has been experimentally investigated for the Reynolds numbers (based on the diameter) ranging from 2.8×103 to 1.0×105, with emphasis on evolution of separated shear layer, its structure and distribution of Reynolds shear stress and turbulence kinetic energy. The results demonstrate that laminar separated shear layer experiences 2–3 times vortex merging before it reattaches, and turbulence separated shear layer takes 5–6 times vortex merging. In addition, relationship between dimensionless initial frequencies of K-H instability and Reynolds numbers is identified, and reasons for the decay of turbulence kinetic energy and Reynolds shear stress in reattachment region are discussed. The project supported by the National Natural Science Foundation of China and the Key Laboratory for Hydrodynamics of NDCST.  相似文献   

15.
Chains of coaxial vortex formations of the “vortex breakdown“ type in axisymmetric swirling incompressible viscous and ideal fluid flows are represented in analytic form. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 174–176, March–April, 1998.  相似文献   

16.
The effects of exit-wedge angle on evolution, formation, pinch-off, propagation and diffusive mass entrainment of vortex rings in air were studied using digital particle image velocimetry. Vortex rings were generated by passing a solenoid-valve-controlled air jet through a cylindrical nozzle. Experiments were performed over a wide range of exit-wedge angles (10° ≤ α ≤ 90°) of the cylindrical nozzle, initial Reynolds numbers (450 ≤ Re ≤ 4,580) and length-to-diameter ratios (0.9 ≤ L/D ≤ 11) of the air jet. For sharp edges (α ≤ 10°), a secondary ring may emerge at high Reynolds numbers, which tended to distort the vortex ring if ingested into it. For blunt edges (α ≥ 45°), by contrast, stable vortex rings were produced. The formation phase of a vortex ring was found to be closely related to its evolution pattern. An exit-wedge angle of 45° was found to be optimal for rapid pinch-off and faster propagation and better stability of a vortex ring. Diffusive mass entrainment was found to be between 35% and 40% in the early stages of a vortex ring propagation and it gradually increased throughout the course of vortex ring propagation. Entrainment fraction was found to be sensitive to the L/D ratio of the initial jet and decreases when the L/D ratio is increased.  相似文献   

17.
The evolution of total circulation and entrainment of ambient fluid during laminar vortex ring formation has been addressed in a number of previous investigations. Motivated by applications involving propulsion and fluid transport, the present interest is in the momentum evolution of entrained and ejected fluid and momentum exchange among the ejected, entrained fluid and added mass during vortex ring formation. To this end, vortex rings are generated numerically by transient jet ejection for fluid slug length-to-diameter (L/D) ratios of 0.5–3.0 using three different velocity programs [trapezoidal, triangular negative slope (NS), and positive slope (PS)] at a jet Reynolds number of 1,000. Lagrangian coherent structures (LCS) were utilized to identify ejected and entrained fluid boundaries, and a Runge-Kutta fourth order scheme was used for advecting these boundaries with the numerical velocity data. By monitoring the center of mass of these fluid boundaries, momentum of each component was calculated and related to the total impulse provided by the vortex ring generator. The results demonstrate that ejected fluid exchanges its momentum mostly with added mass during jet ejection and that the momentum of the entrained fluid at jet termination was < 11% of the total ring impulse in all cases except for the triangular NS case. Following jet termination, momentum exchange was observed between ejected and entrained fluid yielding significant increase in entrained fluid’s momentum. A performance metric was defined relating the impulse from over-pressure developed at the nozzle exit plane during jet ejection to the flow evolution, which increased preferentially with L/D over the range considered. An additional benefit of this study was the identification of the initial (i.e., before jet initiation) location of the fluid to be entrained into the vortex ring.  相似文献   

18.
Results are presented from an experimental investigation into the interaction of a planar shock wave with a vortex ring. A free-falling spherical soap bubble is traversed by the incident shock wave and develops into a vortex ring as a result of baroclinically deposited vorticity (?r×?p 1 0{\nabla\rho\times\nabla p \neq 0}). The vortex ring translates with a velocity relative to the particle velocity behind the shock wave due to circulation. After the shock wave reflects from the tube end wall, it traverses the vortex ring (this process is called “reshock”) and deposits additional vorticity. Planar Mie scattering is used to visualize the atomized soap film at high frame rates (up to 10,000 fps). Particle image velocimetry (PIV) was performed for an argon bubble in nitrogen accelerated by a M = 1.35 shock wave. Circulation was determined from the PIV velocity field and found to agree well with Kelvin’s vortex ring model.  相似文献   

19.
The problem of interaction of small hydrodynamic perturbations with a nonequilibrium region in a Gas flow with different models of energy pumping is solved. One-dimensional and two-dimensional interactions are considered. A range of system parameters is found in which interaction occurs in a resonant manner (significant amplification of perturbations is observed). It is demonstrated that interaction of vortex perturbations with the nonequilibrium region generates heat waves. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 6, pp. 58–64, November–December, 2005.  相似文献   

20.
近距离下射流冲击平板PIV实验研究   总被引:2,自引:1,他引:1  
运用时间分辨粒子成像测速系统(time-resolved particle image velocimetry, TR-PIV)对近距离下射流冲击平板时的流场进行了直接测量, 通过对两个正交的平面流场开展测量, 揭示了冲击距离和雷诺数对射流间隙内三维流动特征及涡系结构演化规律的影响. 结果表明: 射流间隙存在三种典型的涡系结构, 分别为双涡环模式、单涡环模式和卷吸模式, 但在大流量湍流状态下, 射流可能会冲破涡环, 形成随机的高速出流, 各流动模式的出现主要与射流流态及壁面约束作用有关. 运用涡量分析对三种典型涡系结构的能量传递和损失特性进行了比较. 结果表明: 近距离冲击时, 射流的能量通过涡环模式向外传递. 在双涡环模式下, 两个涡环的旋向相反, 端面的约束作用使得两个涡环都被严格约束在射流棒端面之内, 且一次涡环强度显著大于二次涡环强度. 最后, 运用本征正交分解方法对射流间隙内的流动模态及其能量分布进行了分析. 单涡和双涡模式前十阶模态分析结果表明: 能量脉动在较低阶时即以配对的模式出现, 这表明一次涡环与二次涡环均具有良好的对称性, 同时在双涡模式中, 一次涡环是占主导作用的大尺度流动结构. 卷吸模式的前三阶模态分析表明: 射流的能量集中在射流上游, 能量随紊动扩散急剧衰减.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号