首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unique endoperoxide moiety of artemisinin and its derivatives has been considered the functionality exhibiting highly potent antimalarial and anticancer activities.To investigate the mechanisms of their biological actions,development of suitable molecular probes including biotinylated derivatives is of extreme significance.The synthesis and preliminary biological assessment of four new biotinylated artemisinin derivatives have been reported in this work.  相似文献   

2.
仲春龙  姚祝军 《化学学报》2008,66(9):1074-1078
青蒿素1及其衍生物具有特征的过氧桥结构, 并呈现优秀的抗疟生物活性. 为了研究详细的作用机制和确定生物学作用靶标, 本研究从易得的青蒿素衍生物出发, 通过酰胺键相连, 合成了生物素标记的青蒿素衍生物.  相似文献   

3.
Lo VK  Liu Y  Wong MK  Che CM 《Organic letters》2006,8(8):1529-1532
[reaction: see text] Propargylamines have been synthesized by a gold(III) salen complex-catalyzed three-component coupling reaction of aldehydes, amines, and alkynes in water in excellent yields at 40 degrees C. With chiral prolinol derivatives as the amine component, excellent diastereoselectivities (up to 99:1) have been attained. This coupling reaction has been applied to the synthesis of propargylamine-modified artemisinin derivatives with the delicate endoperoxide moieties remaining intact. Cytotoxicities with IC(50) values up to 1.1 microM against a human hepatocellular carcinoma cell line (HepG2) were exhibited by these artemisinin derivatives.  相似文献   

4.
Liu Y  Wong VK  Ko BC  Wong MK  Che CM 《Organic letters》2005,7(8):1561-1564
[reaction: see text] Cytotoxic artemisinin derivatives have been synthesized by a modular approach of "artemisinin + linker + lipophilic alkyl carbon chain". A strong correlation between the length of the carbon chains and the cytotoxicities against human hepatocellular carcinoma (HepG2) was revealed. Notably, compared with artemisinin (IC(50) = 97 microM), up to 200-fold more potent cytotoxicity (IC(50) = 0.46 microM) could be achieved by attachment of a C(14)H(29) carbon chain to artemisinin via an amide linker.  相似文献   

5.
Pamela Moles 《Tetrahedron》2008,64(40):9448-9463
A theoretical study on the artemisinin decomposition mechanism is reported. The suggested pathways have been reproduced and the appearance of the final products can be explained in a satisfactory way. In addition, several intermediates and radicals have been found as relatively stable species, thus giving support to the current hypothesis that some of these species can be responsible for the antimalarial action of artemisinin and its derivatives.  相似文献   

6.
The peroxide function of artemisinin has been activated by iron(II)-heme generated in situ from iron(III)-protoporphyrin-IX and glutathione, a biologically relevant reductant. In mild conditions, this reaction produced a high yield (85%) of heme derivatives alkylated at alpha-, beta-, and delta-meso positions by a C4-centered radical derived from artemisinin.  相似文献   

7.
Artemisinin (also known as Qinghaosu), an active component of the Qinghao extract, is widely used as antimalarial drug. Previous studies reveal that artemisinin and its derivatives also have effective anti-inflammatory and immunomodulatory properties, but the direct molecular target remains unknown. Recently, several reports mentioned that myeloid differentiation factor 2 (MD-2, also known as lymphocyte antigen 96) may be the endogenous target of artemisinin in the inhibition of lipopolysaccharide signaling. However, the exact interaction between artemisinin and MD-2 is still not fully understood. Here, experimental and computational methods were employed to elucidate the relationship between the artemisinin and its inhibition mechanism. Experimental results showed that artemether exhibit higher anti-inflammatory activity performance than artemisinin and artesunate. Molecular docking results showed that artemisinin, artesunate, and artemether had similar binding poses, and all complexes remained stable throughout the whole molecular dynamics simulations, whereas the binding of artemisinin and its derivatives to MD-2 decreased the TLR4(Toll-Like Receptor 4)/MD-2 stability. Moreover, artemether exhibited lower binding energy as compared to artemisinin and artesunate, which is in good agreement with the experimental results. Leu61, Leu78, and Ile117 are indeed key residues that contribute to the binding free energy. Binding free energy analysis further confirmed that hydrophobic interactions were critical to maintain the binding mode of artemisinin and its derivatives with MD-2.  相似文献   

8.
The competition between intramolecular and bimolecular reactions of alkoxyl radicals formed from artemisinin was theoretically analyzed. The enthalpies of these reactions were calculated. The activation energies and rate constants of reactions of intramolecular hydrogen atom transfer, decyclization, and decomposition of alkoxyl radicals of artemisinin and several its derivatives, as well as the activation energies and rate constants of reactions of these radicals with the C-H, S-H, and O-H bonds in biological substrates and their analogs were calculated by the intersecting parabolas method The fastest reactions of artemisinin alkoxyl radicals were identified. The full kinetic scheme of transformation of these radicals was proposed. Artemisinin radicals with the free valence on the carbon atom are predominantly formed due to the transformation of the artemisininoxyl radicals. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1502–1510, September, 2006.  相似文献   

9.
Eleven derivatives of the clinically useful, antimalarial, 1,2,4-trioxane artemisinin have been synthesized in only several steps from commercial cyclohexanones. Of these simple, tricyclic 1,2,4-trioxanes, 10 showed considerable in vitro antimalarial activity, with one being as potent as artemisinin. Some structure-activity relationship generalizations are made from this series of artemisinin analogs. Triethylsilyl hydrotrioxide (Et3SiOOOH), prepared in situ from ozone and triethylsilane, is shown to be a mild, fastacting, and effective dioxetane-forming reagent with vinyl ethers and with a vinyl thioether on relatively small (50–100 mg) scale.  相似文献   

10.
A theoretical study on artemisinin decomposition mechanisms is reported. The calculations have been done at the HF/3-21G and B3LYP/6-31G(d,p) theoretical levels, by using 6,7,8-trioxybicyclo[3.2.2]nonane as the molecular model for artemisinin, and a hydrogen atom, modeling the single electron transfer from heme or Fe(II) in the highly acidic parasite's food vacuole, as inductor of the initial peroxide bond cleavage. All relevant stationary points have been characterized, and the appearance of the final products can be explained in a satisfactory way. Several intermediates and radicals have been found as relatively stable species, thus giving support to the current hypothesis that some of these species can be responsible for the antimalarial action of artemisinin and its derivatives.  相似文献   

11.
The enthalpies of intramolecular reactions of alkoxy and peroxy radicals formed from polyatomic artemisinin hydroperoxides and of their bimolecular reactions with C—H, S—H, and O—H bonds of biological substrates were calculated. The activation energies and rate constants of these reactions were calculated using the intersecting parabolas method. The decomposition of artemisinin hydroperoxides can initiate the cascade of intramolecular oxidation reactions involving radicals R·, RO·, HO·, HO2·, and RO2·. The main sequences of transformation of these radicals were established. The oxidative destruction of the artemisinin peroxy derivatives generates radicals RO2·, HO·, and HO2· in an amount of 4.5 radicals per peroxide derivative molecule on the average. The kinetic scheme of oxidative transformations of the hydroperoxide with four OOH groups and radicals formed from it was constructed using this radical as an example.  相似文献   

12.
Artemisinin extracted from Artemisia annua L. proved to be currently, with its derivatives, the most effective drugs against simple and severe malaria, and is also effective on the chloroquine-resistant forms. The advantageous effect of some cyclodextrins (CDs) on artemisinin solubilization was demonstrated by different authors. The present work aims to confirm the effect of several CDs on artemisinin solubilization and to analyse the complexes formed between these CDs and artemisinin in order to understand their solubilization capacities. In this context, solubility studies, liquid-state NMR spectroscopy (1H NMR studies and ROESY experiments) as well as theoretical studies (molecular modeling) have been performed. Randomly methylated-βCD, Crysmeb? and hydroxypropylated-γCD were also found to improve the aqueous solubilization of artemisinin as well as βCD, γCD and hydroxypropylated-βCD whose effects were already demonstrated. The best solubilization ability was found with Crysmeb?. The spectroscopic studies showed a lot of interactions between artemisinin and all the CDs studied, but mainly outside the cavity. Molecular modeling confirmed that artemisinin and CDs formed non-inclusion complexes.  相似文献   

13.
A highly efficient route for the conversion of the antimalarial drug artemisinin to a novel hydroxy-functionalized tricyclic 1,2,4-trioxane 6 is reported. Neither the trioxane 6 nor its derivatives 14-16, all of which lack the hydrolytically unstable acetal-lactone linkage, show antimalarial activity comparable with that of artemisinin.  相似文献   

14.
Understanding the mechanism of action (MOA) of bioactive natural products will guide endeavor to improve their cellular activities. Artemisinin and its derivatives inhibit cancer cell proliferation, yet with much lower efficiencies than their roles in killing malaria parasites. To improve their efficacies on cancer cells, we studied the MOA of artemisinin using chemical proteomics and found that free heme could directly activate artemisinin. We then designed and synthesized a derivative, ART‐TPP, which is capable of targeting the drug to mitochondria where free heme is synthesized. Remarkably, ART‐TPP exerted more potent inhibition than its parent compound to cancer cells. A clickable probe ART‐TPP‐Alk was also employed to confirm that the attachment of the TPP group could label more mitochondrial proteins than that for the ART derivative without TPP (AP1). This work shows the importance of MOA study, which enables us to optimize the design of natural drug analogues to improve their biological activities.  相似文献   

15.
Here, we describe an efficient and diversity‐oriented entry to both (?)‐artemisinin ( 1 ) and its natural antipode (+)‐artemisinin, starting from commercially and readily available S‐(+)‐ and R‐(?)‐citronellene, respectively. Subsequently, we answered the still open question regarding the specificity of artemisinins action. By using a drug‐sensitive Plasmodium falciparum NF54 strain, we showed that the antimalarial activity of artemisinin is not stereospecific. Our straightforward and biomimetic approach to this natural endoperoxide enables the synthesis of artemisinin derivatives that are not accessible through applying current methods and may help to address the problem of emerging resistance of Plasmodium falciparum towards artemisinin.  相似文献   

16.
Isolation of the most effective antimalarial drug, artemisinin, from the plant sweet wormwood, does not yield sufficient quantities to provide the more than 300 million treatments needed each year. The high prices for the drug are a consequence of the unreliable and often insufficient supply of artemisinin. Large quantities of ineffective fake drugs find a market in Africa. Semisynthesis of artemisinin from inactive biological precursors, either dihydroartemisinic acid (DHAA) or artemisinic acid, offers a potentially attractive route to increase artemisinin production. Conversion of the plant waste product, DHAA, into artemisinin requires use of photochemically generated singlet oxygen at large scale. We met this challenge by developing a one‐pot photochemical continuous‐flow process for the semisynthesis of artemisinin from DHAA that yields 65 % product. Careful optimization resulted in a process characterized by short residence times. A method to extract DHAA from the mother liquor accumulated during commercial artemisinin extractions, a material that is currently discarded as waste, is also reported. The synthetic continuous‐flow process described here is an effective means to supplement the limited availability of artemisinin and ensure increased supplies of the drug for those in need.  相似文献   

17.
The adsorption of multiple protein layers on biotinylated organic surfaces has been characterized using surface plasmon resonance (SPR) and atomic force microscopy (AFM). Diffusion-limited loading of the biotinylated self-assembled monolayers (SAMs) ensures a precise control of the streptavidin surface density. For the subsequent interaction with biotinylated peroxidase, SPR data hint at a streptavidin density dependent orientation during peroxidase adsorption. Microcontact printed well-defined two-dimensional patterned surfaces of biotinylated organothiols and protein-resistant OEG-thiols allow an in-situ differentiation of specific and nonspecific adsorption (e.g., mono- vs multilayer adsorption). Additionally, the very important issue of biological activity of surface-bound enzymes is addressed by comparing the enzyme activities in solution with that for surface-bound species.  相似文献   

18.
青蒿素研究进展   总被引:20,自引:0,他引:20  
青蒿素是目前治疗疟疾的特效药。本文对自青蒿素发现以来的最新研究进展进行了比较详尽的综述。内容包括: 青蒿素的发现及历史, 青蒿素的来源, 青蒿素的全合成,青蒿素的生物合成, 青蒿素衍生物以及植物组织培养生产青蒿素。  相似文献   

19.
In this work the calculated nuclear quadrupole coupling constants (NQCC; chi) of 17O in artemisinin and some of its derivatives and the effects of charge density due to the nature of ligands on NQCC of 17O were investigated. All calculations were performed at the HF/3-21G level using the Gaussian 98 program. The results show that the O-O linkage has a characteristic role in the antimalarial activity of artemisinin. In addition, various substitutions on C4 change the charge density on these oxygens and consequently change the pharmaceutical effect of artemisinin. Our results suggest that due to a larger charge density on O1, the heme iron approaches the endoperoxide moiety at the O1 position with preference to the O2 position.  相似文献   

20.
A library of C-16 modified artemisinin analogs was prepared and their antimalarial as well as antileishmanial activities were evaluated. Synthesis of these compounds involved the conversion of artemisinin to its phenol derivatives 7 and 12, and subsequent parallel derivatization by introducing new chemical groups through ester, carbamate, sulfate, phosphate and isourea linkages. Comparison of in vitro antimalarial activities showed that C9-beta artemisinin analogs (8a-f) are more potent than the corresponding C9-alpha diastereomers (9a-f); however, their antileishmanial activities were in the same range. Many of the 10-deoxoartemisinin analogs studied here showed promising antiparasitic activities. For example, compounds 13a-e are approximately three times more active against drug resistant W2 strain of P. falciparum, compared to artemisinin (IC(50), approximately 0.2 - 0.6 nM; cf. artemisinin = 1.6 nM). Further, a number of compounds in this series were notably leishmanicidal, with activities comparable to or better than pentamidine (e.g., 13g and 13j). Detailed in vivo studies involving these active compounds are underway to identify lead candidates for further development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号