首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical oxidations of hexacyanoferrate II ion and reduced nicotinamide adenine dinucleotide at carbon electrodes are described. Amperometric methods for nicotinamide adenine dinucleotide oxidoreductase analyses by amperometric monitoring of hexacyanoferrate II are reported for lactic dehydrogenase in serum.  相似文献   

2.
The kinetics of ruthenium(III) catalyzed oxidation of formaldehyde and acetaldehyde by alkaline hexacyanoferrate(III) has been studied spectrophotometrically. The rate of oxidation of formaldehyde is directly proportional to [Fe(CN) 3– 6 ] while that of acetaldehyde is proportional tok[Fe(CN) 3– 6 ]/{k +k[Fe(CN) 3– 6 ]}, wherek, k andk are rate constants. The order of reaction in acetylaldehyde is unity while that in formaldehyde falls from 1 to 0. The rate of reaction is proportional to [Ru(III)] T in each case. A suitable mechanism is proposed and discussed.
Die Kinetik der Ru(III)-katalysierten Oxidation von Formaldehyd und Acetaldehyd mittels alkalischem Hexacyanoferrat(III)
Zusammenfassung Die Untersuchung der Kinetik erfolgte spektrophotometrisch. Die Geschwindigkeitskonstante der Oxidation von Formaldehyd ist direkt proportional zu [Fe(CN) 3– 6 ], währenddessen die entsprechende Konstante für Acetaldehyd proportional zuk[Fe(CN) 3– 6 ]/{k +k[Fe(CN) 3– 6 ]} ist, wobeik,k undk Geschwindigkeitskonstanten sind. Die Reaktionsordnung für Acetaldehyd ist eine erste, die für Formaldehyd fällt von erster bis zu nullter Ordnung. Die Geschwindigkeitskonstante ist in jedem Fall proportional zu [Ru(III)] T . Es wird ein passender Mechanismus vorgeschlagen.
  相似文献   

3.
Rao GG  Rukmini V 《Talanta》1967,14(7):849-851
The use of iron(III) in sulphuric acid medium and of potassium hexacyanoferrate(III) in hydrochloric acid medium has been investigated for the oxidimetric determination of indigo and indigo sulphonic acid. Conditions have been established for the assay of the dye with iron(III) sulphate at 100 degrees and with potassium hexacyanoferrate(III) at room temperature.  相似文献   

4.
Burger N  Karas-Gasparec V 《Talanta》1973,20(8):782-785
A new, simple and rapid method of determination of ascorbic acid in amounts of 45-360 mug is described. The ascorbic acid is determined spectrophotometrically at 420 nm from the decrease in absorbance it causes in 1 x 10(-3)M hexacyanoferrate(III) in McIlvaine buffer at pH 5.2. The proposed method is suitable for the determination of ascorbic acid in pharmaceutical preparations and probably natural products.  相似文献   

5.
6.
Malik WU  Om H 《Talanta》1967,14(11):1341-1343
An amperometric titration of cobalt(II) with hexacyanoferrate(III) in aqueous ammonium citrate or aqueous glycine solution at pH 9.8 or pH 8.0 respectively, is reported. Cobalt concentrations of 2-30 mg/l were successfully determined. In citrate solutions cerium(III) and iron(III) interfered, and in glycine solutions, copper(II) and vanadium(V).  相似文献   

7.
The kinetics of the two reactions hexacyanoferrate (III)-iodide and peroxodisulfate-iodide in several isodielectric water-cosolvent mixtures have been studied. The results can be rationalized as a consequence of the cosolventwater interaction.
(III) -. -.
  相似文献   

8.
The oxidation of cyanide with hexacyanoferrate(III) is a thermodynamically possible but kinetically slow reaction, which is catalysed by copper(II). The catalysed reaction has a second-order dependence on hexacyanoferrate(III) concentration, and the pseudo second-order rate constant increases linearly with the copper concentration, at least in the range from 10(-7) to 10(-3)M.  相似文献   

9.
RuCl3 can further catalyze the reaction between hexacyanoferrate(III) and iodide ions, which is already catalyzed by the hydrogen ions obtained from perchloric acid. Rate, when the reaction is catalyzed only by the hydrogen ions, was separated graphically from the rate when ruthenium(III) and H+ ions both catalyze the reaction. Reactions studied separately in the presence as well as in the absence of RuCl3 under similar conditions were found to follow second order kinetics w.r.t. [I]. While the rate showed direct proportionality w.r.t. [Fe(CN)6]3− and [RuCl3]. At low concentrations the reaction shows direct proportionality with respect to [H+] which tends to become proportional to the square of hydrogen ion concentrations. External addition of [Fe(CN)6]4− ions retards the reaction velocity while change in ionic strength of the medium has no effect on the rate. With the help of the intercept of the catalyst graph, extent of the reaction, which takes place without adding ruthenium(III) was calculated and it was in accordance with the values obtained from the separately studied reaction in which only H+ ions catalyze the reaction. It is proposed that ruthenium forms a complex, which slowly disproportionates into the rate-determining step. Arrhenius parameters at four different temperatures were also calculated.   相似文献   

10.
Three simple, rapid and accurate titrimetric procedures using potassium hexacyanoferrate(III) have been developed for the micro determination of five phenothiazine drugs in pure form and in dosage forms. The procedures are based on the oxidation of phenothiazines in an acid medium to colourless sulphoxides via orange or purple coloured products. In the first procedure, phenothiazines are titrated directly in H(2)SO(4)-H(3)PO(4) medium to a colourless end point. In the second method, a known excess of the oxidant is added and after a specified time, the residual oxidant is determined iodometrically. The third method employs electrometric end-point detection. The optimum reactions conditions and other analytical parameters are evaluated. The influence of the substrates commonly employed as excipients with phenothiazine drugs has been studied. Statistical comparison of the results with those of an official method shows excellent agreement and indicates no significant difference in precision.  相似文献   

11.
The reaction of 16α-hydroxyestrone with hexacyanoferrate(III) and arginine in alkaline solution at 95°C produces a fluorescent compound that is measured at 490 nm (λ(ex) = 395 nm). Most other steroids do not interfere. The calibration is linear for 0.5–50 μg of analyte.  相似文献   

12.
A new method for the determination of formaldehyde by using formaldehyde dehydrogenase is described. The method is based on the quantitative oxidation of formaldehyde with oxidized nicotinamide adenine dinucleotide (NAD+), in the presence of formaldehyde dehydrogenase, to form the reduced dinucleotide (NADH). This enzyme does not require glutathione as a co-factor and the NADH produced, which is directly proportional to the concentration of formaldehyde in the assay solution, is then measured spectrophotometrically at 340 nm. Formaldehyde can be determined in the range 0.3–8.0 μg ml?1 (1.0×10?5–2.7× 10?4 M) with a sensitivity of 0.216 absorbance/ μg ml?1 (0.0065 absorbance/μM). Optimal conditions and the selectivity of this enzyme toward formaldehyde are described.  相似文献   

13.
Alkaline hexacyanoferrate(III) oxidation of freshly prepared solutions of CrIII (pH>12) at 27°C follows the rate law, Equation 1:
  相似文献   

14.
Rukmini N  Kavitha VS  Rao KR 《Talanta》1979,26(7):579-580
The determination of antimony(III) with potassium hexacyanoferrate(III) in 5M hydrochloric acid medium and in the presence of 40% v/v acetic acid is described. Ferroin is used as the indicator. Antimony has been determined in tartar emetic, solder and pig lead. Arsenic(III) does not interfere.  相似文献   

15.
Sastry GS  Rao GG 《Talanta》1972,19(2):212-214
Conditions have been developed for the titrimetric determination of ascorbic acid with hexacyanoferrate(III), with potentiometric and visual end-points, in sulphuric, hydrochloric or phosphoric acid media. Several organic substances likely to be present in plant tissues do not interfere.  相似文献   

16.
The thermal decompositions of hydrotalcites with hexacyanoferrate(II) and hexacyanoferrate(III) in the interlayer have been studied using thermogravimetry combined with mass spectrometry. X-ray diffraction shows the hydrotalcites have a d(003) spacing of 11.1 and 10.9 Å which compares with a d-spacing of 7.9 and 7.98 Å for the hydrotalcite with carbonate or sulphate in the interlayer. XRD was also used to determine the products of the thermal decomposition. For the hydrotalcite decomposition the products were MgO, Fe2O3 and a spinel MgAl2O4. Dehydration and dehydroxylation take place in three steps each and the loss of cyanide ions in two steps.  相似文献   

17.
《Talanta》1963,10(12):1299-1302
A titrimetric determination of tinII in strong hydrochloric acid solution with standard potassium hexacyanoferrate(III) solution using 3,3'-dimethylnaphthidine or o-dianisidine as indicator is described.  相似文献   

18.
The mechanism for the decomposition of hydrotalcite remains unsolved. Controlled rate thermal analysis enables this decomposition pathway to be explored. The thermal decomposition of hydrotalcites with hexacyanoferrate(II) and hexacyanoferrate(III) in the interlayer has been studied using controlled rate thermal analysis technology. X-ray diffraction shows the hydrotalcites have a d(003) spacing of 10.9 and 11.1 Å which compares with a d-spacing of 7.9 and 7.98 Å for the hydrotalcite with carbonate or sulphate in the interlayer. Calculations show dehydration with a total loss of 7 moles of water proving the formula of hexacyanoferrate(II) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.5·7H2O and 9.0 moles for the hexacyanoferrate(III) intercalated hydrotalcite with the formula of Mg6Al2(OH)16[Fe(CN)6]0.66·9H2O. CRTA technology indicates the partial collapse of the dehydrated mineral. Dehydroxylation combined with CN unit loss occurs in two isothermal stages at 377 and 390°C for the hexacyanoferrate(III) and in a single isothermal process at 374°C for the hexacyanoferrate(III) hydrotalcite.  相似文献   

19.
20.
Prasad S  Nigam PC 《Talanta》1991,38(6):627-630
A kinetic method is proposed for the determination of ruthenium(III) by means of its catalytic effect on the oxidation of benzylamine by hexacyanoferrate(III) in alkaline medium. The reaction is followed spectrophotometrically by measuring the decrease in the absorbance of hexacyanoferrate(III) at 420 nm. Under the optimum experimental conditions ruthenium(III) can be determined in the range 10-121 ng/ml with an average error of 1.7% and maximum relative standard deviation of 1.3%. The influence of many potential interferents has been examined and the method has been tested for determination of ruthenium(III) in synthetic mixtures. The method is convenient, reliable and rapid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号