首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper reports sensitive phenol detection using (i) tyrosinase (Tyr)‐based oxidation of phenol to catechol, combined with (ii) electrochemical‐chemical‐chemical (ECC) redox cycling involving Ru(NH3)63+, catechol, and tris(2‐carboxyethyl)phosphine (TCEP). Phenol is converted into catechol by Tyr in the presence of dissolved O2. Catechol then reacts with Ru(NH3)63+, generating o‐benzoquinone and Ru(NH3)62+. o‐Benzoquinone is reduced back to catechol by TCEP, and Ru(NH3)62+ is accumulated over the course of the incubation. When Ru(NH3)62+ is electrochemically oxidized to Ru(NH3)63+, ECC redox cycling occurs. For simple phenol detection, bare ITO electrodes are used without modifying the electrodes with Tyr. The detection limit for phenol in tap water using Tyr‐based oxidation combined with ECC redox cycling is ca. 10?9 M, while that using only Tyr‐based oxidation is ca. 10?7 M.  相似文献   

2.
Highly boron-doped diamond electrodes are characterized voltammetrically employing Ru(NH3)63+/2+, Fe(CN)63−/4−, benzoquinone/hydroquinone, and cytochrome c redox systems. The diamond electrodes, which are polished to nanometer finish, are initially `activated' electrochemically and then pretreated by oxidation, reduction, or polishing. All electrodes give reversible cyclic voltammetric responses for the reduction of Ru(NH3)63+ in aqueous solution.Redox systems other than Ru(NH3)63+/2+ show characteristic electrochemical behavior as a function of diamond surface pretreatment. In particular, the horse heart cytochrome c redox system is shown to give reversible voltammetric responses at Al2O3 polished boron-doped diamond electrodes. No voltammetric response for cytochrome c is detected at anodically pretreated diamond electrodes. The observations are attributed to preferential interaction of the polished diamond surface with the reactive region of the cytochrome c molecule and low interference due to a lack of protein electrode fouling.  相似文献   

3.
Electrochemically active hybrid coatings based on cationic films, didodecyldimethylammonium bromide (DDDMAB), and poly(diallyldimethylammonium chloride) (PDADMAC) are prepared on glassy carbon electrode surface by cycling the film‐covered electrode repetitively in a pH 7 solution containing flavin adenine dinucleotide (FAD), and anionic hexacyanometalate (HCM) complexes, Fe(CN)63? and Ru(CN)64?. Cyclic voltammetric features of hybrid coatings resemble that of electron transfer process of surface‐confined redox species. Electrochemical quartz crystal microbalance (EQCM) was used to monitor the deposition of FAD on DDDMAB film. Cyclic voltammetric peak potentials of modified electrode were found to be shifted to more negative region with increasing pH of contacting solution with a slope value of 63.3mV per pH unit. The electrocatalytic behavior of FAD‐modified DDDMAB‐coated GCE and hybrid film electrodes was tested towards reduction of oxygen, S2O82?, SO52? and oxidation of SO32?. The application of FAD‐modified DDDMAB‐coated GCE for S2O82? estimation was demonstrated in amperometric mode. The sensitivity and detection limit (S/N=3) were 267.6 μA mM?1 and 2×10?6 M, respectively.  相似文献   

4.
《Electroanalysis》2003,15(22):1756-1761
Mercaptoundecanoic acid (MUA) and glutathione (GSH) self‐assembled monolayers were prepared on gold‐ wire microelectrode. Cyclic voltammetry was used to investigate the influence of temperature on electrochemical behaviors of Fe(CN)63?/4? and Ru(NH3)63+/2+ at these SAMs modified electrodes in aqueous solution. It is found that temperature shows great influence on electron transfer (ET) and mass transport (MT) for the two SAMs modified electrodes and the influence of temperature depends on the charge properties of the redox couples and terminal groups of SAMs and the structure of the monolayer on gold surface. The temperature can greatly increase MT rate of Fe(CN)63?/4? at both MUA and GSH modified electrodes. However, the increased MT rate doesn't have any effect on the CV's for Fe(CN)63?/4? /MUA system. For Ru(NH3)63+/2+ , temperature can greatly improve the electrochemical reaction in both MUA and GSH modified electrodes, which is ascribed to temperature‐induced diffusion and convection and the electrostatic interaction between Ru(NH3)63+/2+ and negatively charged carboxyl groups on the electrode surface.  相似文献   

5.
Two kinds of chemically modified electrodes were prepared. In the first type of electrodes, zinc oxide (ZnO) and flavin adenine dinucleotide (FAD) molecules were deposited onto the glassy carbon-, gold-, and SnO2-coated glass electrodes by using cyclic voltammetry from the bath solution containing aqueous 0.1 M zinc nitrate, 0.1 M sodium nitrate, and 1 × 10−4 M FAD. It was called as ZnO/FAD modified electrodes. The second type of modified electrode was prepared by the electropolymerization method. Electrochemical polymerization of FAD was carried out from the acidic solution containing 1 × 10−4 M FAD monomers onto electrode surfaces. This poly(FAD)-modified electrode yields a new redox couple in addition to the monomers redox couple. The influence of the concentrations, pH, and electrocatalytic properties of the ZnO/FAD- and poly(FAD)-modified electrodes are investigated by means of the in situ technique electrochemical quartz–crystal microgravimetry (EQCM) combined with cyclic voltammetry and the ex situ technique scanning electron microscopy. From these studies, it appears that the cathodic deposition of ZnO/FAD-modified electrodes gives only one redox couple, and the anodically polymerized FAD film-modified electrodes gives two reversible redox couples. The pH dependence of the redox responses were investigated and the kinetics of electron transfer was evaluated. In addition, the EQCM technique was employed to follow the deposition process of both kinds of modified electrodes in real time as well as the characteristics of the charge transfer associated with the surface-confined redox-active couples. The electrocatalytic activity of the poly(FAD)-modified electrode towards the reduction of hydrogen peroxide and the oxidation of dopamine and ascorbic acid was explored. The important electrocatalytic properties of poly(FAD)-modified electrode were observed for simultaneous separation of dopamine and ascorbic acid in neutral solution. This poly(FAD)-modified electrode has several advantages than the previously reported FAD-modified electrodes.  相似文献   

6.
The redox and interactive behaviour of flavin adenine dinucleotide (FAD) with a ruthenium (Ru)-modified glassy carbon electrode (GCE) was investigated. The electron-transfer kinetics on the Ru-modified GCE gives an apparent electron-transfer coefficient, α app of 0.56, and an apparent heterogeneous electron transfer rate constant, k app of 2.32?s?1, respectively. The cyclic voltammetry (CV) complemented by alternating cyclic voltammetry (ACV) shows reduction of FAD to be a quasi-reversible reaction involving FAD adsorption. The adsorption of FAD on the Ru-modified GCE fits a Langmuir adsorption isotherm. The large apparent negative Gibbs energy of adsorption ΔG ads (?38.2?kJ?mol?1) of FAD onto the Ru-modified GCE confirmed a strong chemical adsorption of FAD on the surface. The deposited Ru islands block surface sites for FAD adsorption and the electron-transfer communication between FAD and the electrode surface does not significantly improve with a deposited Ru monolayer.  相似文献   

7.
《Analytical letters》2012,45(9):835-855
Abstract

An electrode method has been developed for the determination of flavin adenine dinucleotide (FAD) using a potentiometric gas sensor and commercially available enzyme preparations. The construction of the FAD-sensitive electrode is based on immobilizing alkaline phosphatase (E.C. 3.1.3.1) and adenosine deaminase (E.C. 3.5.4.4) on the sensing tip of an ammonia gas sensor. Alkaline phosphatase enzymatically catalyzes the hydrolysis of FAD to adenosine which is subsequently converted to ammonia by adenosine deaminase. The response of the dual-enzyme electrode is linear between 8 × 10?5 M and 4 × 10?3 M FAD with a slope of 43 mV/decade concentration at pH 8.5 and 37[ddot]C. The optimum buffer system is 0.5 M diethanolamine, 1 × 10?3 M Tris-HCl and 1 × 10?3 M MgCl2. Electrodes constructed with enzymes immobilized by cross-linking with glutaraldehyde and bovine serum albumin showed longer life times than electrodes using enzymes entrapped by a dialysis membrane. The electrode is highly selective over riboflavin and flavin mononucleotide, but it does respond to other nucleotides.  相似文献   

8.
Sulfonated ormosil hydrogels (~80% water) were prepared using tetramethyl orthosilicate as a silica precursor and 2(4-chlorosulfonylphenyl)ethyltrichlorosilane to provide sulfonate functionality for ion-exchange and ion conductivity. Ruthenium(III) hexamine was used as a redox probe in electrochemical studies performed on porous carbon fibre paper electrodes impregnated with the gel. The gel-modified electrodes extracted Ru(NH3)63+ from solutions in 0.1 M CF3CO2Na(aq) with a partition coefficient of ~36, and with ~100% of the sulfonate sites being accessible for ion exchange. The Ru(NH3)63+/2+ couple exhibited reversible and facile electrochemistry in the gel, with a Ru(NH3)62+ diffusion coefficient of 4.9×10–8 cm2 s–1 determined by chronoamperometry. This is an order of magnitude higher than the mobility of this complex in Nafion. The hydrogel-modified electrodes were stable for days, and could be repeatedly loaded with Ru(NH3)63+.Special Issue to celebrate the 70th birthday of Professor Zbigniew Galus  相似文献   

9.
《Electroanalysis》2017,29(2):339-344
In the electrochemical detection method for pesticides that measures their inhibitory effects on acetylcholinesterases (AChEs), the direct electrooxidation of the enzyme product (thiocholine, SCh) is slow at conventional electrodes. To overcome this limitation, an electron mediator is required to lower the applied potential and facilitate the transfer of electrons between the enzyme product and electrode. In this study, [Ru(NH3)5py]3+ is introduced as an electron mediator in inhibition‐based pesticide detection. To obtain a better signal‐to‐background ratio, [Ru(NH3)5py]3+, which undergoes a fast outer‐sphere reaction, is combined with low‐electrocatalytic indium‐tin‐oxide (ITO) electrodes at which many interfering species undergo slow redox reactions. AChE is immobilized onto an avidin‐modified ITO electrode via the direct adsorption of avidin onto ITO followed by the biospecific binding of biotinylated AChE to the avidin. SCh is generated from acetylthiocholine by AChE. Subsequently, SCh converts [Ru(NH3)5py]3+ to [Ru(NH3)5py]2+, which is then oxidized at the ITO electrode. This procedure allows the sensitive detection of carbaryl at a low applied potential of 0.15 V vs Ag/AgCl. The calculated detection limit for carbaryl is approximately 0.3 pM. This simple and sensitive pesticide sensor is thus very promising and should be extendable to the onsite environmental monitoring of other pesticides.  相似文献   

10.
A liquid chromatographic method for the selective detection of riboflavin (vitamin B2) and flavin adenine dinucleotide (FAD) utilizing a thin-layer amperometric detector with two electrodes in series is described. The upstream electrode was held at ?0.4 V (vs. SCE) with the downstream electrode at +0.1 V (vs. SCE). The linear ranges are 40 ng?10 μg for riboflavin and 200 ng?8 μg for FAD and the limits of detection are 8 and 40 ng, respectively. The interference of thirteen different vitamins on the spectrophotometric or electrochemical detection of FAD and vitamin B2 was studied and no interference was found using the two-electrode detector. The effects of light on riboflavin and FAD is discussed. The method is convenient, rapid and economic, and has high selectivity.  相似文献   

11.
The salts of the linkage isomers of thiocyanatopentammineruthenium(III) [Ru(NH3)5(NCS)]2+, [Ru(NH3)5(SCN)]2+ and dithiocyanatotetrammineruthenium(III) [Ru(NH3)4(NCS)2]+ along with those of tetrathiocyanatodiammineruthenate(III) [Ru(NH3)2(SCN)4]? have been synthesized. The insoluble polymeric complex [Ru(NH3)2(SCN)2]n has also been prepared. The compounds have been characterized by chemical analyses, spectral (IR, UV and visible), magnetic susceptibility, conductivity, cyclic voltammetry and chromatography studies.  相似文献   

12.
The kinetics of Ru[(NH3)6]3+ reduction in 1 M NaNO3 solution at Ag(210) and Ag(111) singlecrystal electrodes modified by n-decanthiol monolayer is studied by electrochemical impedance spectroscopy and cyclic voltammetry. By using these two methods, standard rate constants of the redox reaction involving Ru[(NH3)6]3+/2+ redox couple in the absence and in the presence of the n-decanthiol film were estimated. The equivalent circuit describing the experimental data in the presence of the self-assembled organic monolayer and in the absence of redox reaction is an electrical circuit comprising a large resistance (∼106 Ω) connected in parallel with a capacitance (∼10−8 F). Analysis of kinetic data and extrapolation of Tafel lines resulted in the determination of the rate constant at unmodified Ag-electrode, which is characteristic of very fast heterogeneous electron transfer. The calculated rate constants for n-decanthiol-modified silver singlecrystal faces (210) and (111) in 1 M NaNO3 solution (pH 6.3) equal 4.63 × 10−5 and 3.05 × 10−5 cm/s, respectively. The results are compared with the data at hand reported by different authors for gold electrodes in indifferent electrolyte solution in the absence and in the presence of self-assembled monolayer.  相似文献   

13.
The fluorescence behaviour of the flavins riboflavin, flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and lumiflavin in aqueous solution at pH 8 in the presence of the reducing agents β-mercaptoethanol (β-ME), dithiothreitol (DTT), and sodium nitrite (NaNO2) is studied under aerobic conditions. The fluorescence quantum yields and fluorescence lifetimes are determined as a function of the reducing agent concentration. For all three reducing agents diffusion controlled dynamic fluorescence quenching is observed which is thought to be due to photo-induced reductive electron transfer. For DTT additionally static fluorescence quenching occurs.  相似文献   

14.
Single- and two-component self-assembled organic monolayers (SAM) formed of HS-C10H20-COOH and the HS-C10H20-COOH + HS-C6H12-OH mixture and applied on gold electrodes of different shapes and roughness are studied. The resulting monolayers are characterized in 1 M NaNO3 solutions by the methods of electrochemical impedance spectroscopy in the frequency range from 1 Hz to 100 kHz and cyclic voltammetry in the potential range from 0 to −0.4 V (SCE). Using these method, the behavior of modified single-crystal and polycrystalline gold electrodes in electrolyte solutions of different acidity is assessed and the standard rate constants for the Ru[(NH3)6]3+/2+ redox reaction are determined. The SAM film formed from the ethanol solution of the HS-C10H20-COOH + HS-C6H12-OH mixture (0.025 M) on the Au(210) singlecrystal face lowers down the rate of the heterogeneous Ru[(NH3)6]3+/2+ reaction from 1.5 to 4.02 × 10−4 cm/s in the electrolyte solution with pH from 2. In solutions with higher pH, the rate constant is higher by almost an order of magnitude (2.74 × 10−3 cm/s). The distribution of micropores in SAM films is studied within the framework of a model of micro-array electrodes. The results of studies are compared with the literature data on the gold electrode in solutions of inactive electrolytes in the absence and in the presence of SAM films formed by alkylmercaptans with equal chain lengths.  相似文献   

15.
An ITO electrode was coated by a Nafion film incorporating Ru(bpy)32+ complex as redox centers either by mixture casting method, adsorption method, or swelling method and the electrochemical reactivity of the modified electrode was determined by the in-situ spectrocyclic voltammogram (SCV) in a sodium perchlorate aqueous solution at pH 1.2. A modified Poisson statistics equation was used to estimate the charge transfer distance (Ro) between the Ru(bpy)32+ complexes. The estimated charge transfer distances for the electrodes prepared by swelling method (Ro = 1.63 nm for the electrode modified in M/W 1:10, and 1.69 nm in M/W 1:2) and adsorption method (Ro = 1.61 nm) were longer than that for mixture casting method (Ro = 1.5 nm). Based on the different procedure of Ru(bpy)32+ complex incorporation in the Nafion film, the reasons that affect the apparent charge transfer distance were discussed.  相似文献   

16.
The electrochemical properties of a gold electrode modified with a mixed thiol monolayer containing both a polar and a non-polar head group have been investigated in aqueous Fe(CN)64−, flavin adenine dinucleotide (FAD) and ubiquinone-0 (2,3-dimethoxy-5-methyl-1,4-benzoquinone, UQ0) solutions. The cyclic voltammetric current-potential (i-E) response of Fe(CN)64− was found to be affected considerably by the polarity of the head group contained in the mixed monolayer assembly, as compared with those of FAD and UQ0. It was also found that in the cases of UQ0 and FAD the i-E responses for the modified electrode were affected by their own molecular size rather than the polarity of the mixed monolayer head group. Furthermore, compared with Fe(CN)64− ion, these biologically related molecules are able to permeate readily into the well-organized and hydrophobic alkyl chains of the monolayer assembly. The voltammetric profile of UQ0 was improved by the modification of aminoethanethiol, as compared with those of bare gold and the electrode modified with other polar thiols. Further, two different permeation paths of the electrode species into the mixed monolayer are suggested from the variation of the i-E response with the cycle of the potential scan.  相似文献   

17.
《Analytical letters》2012,45(13):2077-2088
Abstract

An electrochemiluminescence (ECL) method for reduced nicotinamide adenine dinucleotide (NADH) was proposed by immobilizing tris(2,2′‐bipyridyl) ruthenium(II) (Ru(bpy)3 2+) in multiwall carbon nanotubes (MWCNTs)/Nafion composite membrane that was formed on glassy carbon electrode surface. The electrochemical and ECL behaviors of the immobilized Ru(bpy)3 2+ were investigated. The cyclic votammogram of the modified electrode in pH 7.0 phosphate buffer solution showed a couple of redox peaks at +1190 and +1060 mV at 100 mV/s. The composite film had a more open structure and a large surface area allowing faster diffusion of Ru(bpy)3 2+. The presence of MWCNTs resulted in the improved ECL sensitivity and longer‐term stability of the modified electrode. The modified electrode showed a linear response to NADH in the concentration range of 1.0×10?6 to 1.6×10?5 M with a detection limit of 8.2×10?7 M.  相似文献   

18.
Self-assembled monolayers (SAMs) of thiols with carboxylic acid terminal groups were formed on gold substrates. The electron transfer characteristics of redox species on the above SAM-modified electrodes were studied in acid and neutral media with the help of voltammetry under two different conditions: (1) solution phase electron transfer and (2) bridge mediated electron transfer. Two redox systems, viz., [Fe(CN)6]4-/3− and Ru[(NH3)6]2+/3+ were chosen for the solution phase study. Investigations of bridge mediated electron transfer were carried out by functionalising the SAM with redox moieties and then studying their redox behaviour. For this study, ferrocene carboxylic acid and 1,4-diamino anthraquinone were used and they were linked to carboxylic acid terminated thiols by covalent linkage. The voltammetric results with mercaptoundecanoic acid SAM demonstrate the difference in behaviour between solution phase and bridge mediated electron transfer processes.  相似文献   

19.
Silica sol-gel (SG) films with templated pores were deposited on glassy carbon (GC) electrodes by an electrochemically initiated process. Generation-4 poly(amidoamine), PAMAM, dendrimer was included in the tetraethoxysilane precursor to facilitate pore formation. The PAMAM adsorbs to the GC, which blocks SG formation at those sites on the electrode. The pore size was 10?±?5?nm. After removal of the PAMAM, cyclic voltammetry of Fe(CN)6 3? and Ru(NH3)6 3+ at pH?6.2 showed that the residual negative charge on the silica attenuated the current for the former and increased the current for the latter, presumably by electrostatic repulsion and ion-exchange preconcentration, respectively. This premise was supported by repeating the measurements at the isoelectric point. Methylation of the silanol sites was used to eliminate the charge of the SG. At the end-capped SG, the voltammetry of Fe(CN)6 3? and Ru(NH3)6 3+ yielded currents that were independent of pH over the range 2.1 to 7.2. Circumventing the need for the silanization by using (3-glycidyloxypropyl)trimethoxysilane as the sol-gel precursor failed because the oxygen plasma treatment to remove the PAMAM attacked the organically modified sol-gel backbone. The resulting modified electrode mitigated the influence of proteins on the voltammetry of test species and stabilized functionalize nanoparticle catalysts under hydrodynamic conditions.  相似文献   

20.
《Electroanalysis》2005,17(1):38-46
Direct electron transfer between an electrode and the redox active centre of glucose oxidase, flavin adenine dinucleotide (FAD), is probed using carbon nanotube modified gold electrodes. Gold electrodes are first modified with a self‐assembled monolayer of cysteamine and then shortened single walled carbon nanotubes (SWNT) are aligned normal to the electrode surface by self‐assembly. The electrochemistry of these aligned nanotube electrode arrays is initially investigated using potassium ferricyanide which showed SWNT act as nanoelectrodes with the ends of the tubes more electrochemically active than the walls. Subsequently the nanotubes are plugged into the enzymes in one of two ways. In the first method, native glucose oxidase is covalently attached to the ends of the aligned tubes which allowed close approach to FAD and direct electron transfer to be observed with a rate constant of 0.3 s?1. In the second strategy, FAD was attached to the ends of the tubes and the enzyme reconstituted around the surface immobilized FAD. This latter approach allowed more efficient electron transfer to the FAD with a rate constant of 9 s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号