首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic voltammetry was used to investigate the electrochemical behaviour of ascorbic acid at a carbon—epoxy composite electrode modified with the electron mediator cobalt phthalocyanine. The modified electrode reduced the overpotential necessary for the oxidation of the vitamin by approximately 150 mV to 0.21 V vs. The saturated calomel electrode; the process was dependent on the pH of the supporting electrolyte, but independent of ionic strength over the range studied. The relative standard deviation (r.s.d.) of the peak heights of the cyclic voltammograms was 0.81% for a 1 × 10?4 M ascorbic acid solution (n = 7). The optimum supporting electrolyte was found to be 0.05 M phosphate buffer (pH 5).Amperometry in stirred solutions was then done at an applied potential of +0.25 V. The limit of detection was 0.65 ng ml?1 and the calibration graph was linear in the range 175 ng ml?1?50 μg ml?1. The method was used to determine ascorbic acid concentrations in single- and multivitamin preparations; the recovery was 97.86% for the vitamin added to one preparation. The r.s.d. for the analyses in these samples was about 5%. For comparison, the vitamin was also determined in these tablets using LC with UV detection at 254 nm; the correlation coefficient for the levels determined was 0.9989 (p = 0.0007).  相似文献   

2.
The effect of surface modifications on the electrochemical behavior of the anticancer drug idarubicin was studied at multiwalled carbon nanotubes modified glassy carbon and edge plane pyrolytic graphite electrodes. The surface morphology of the modified electrodes was characterized by scanning electron microscopy. The modified electrodes were constructed for the determination of idarubicin using adsorptive stripping differential pulse voltammetry. The experimental parameters such as supporting electrolyte, pH, accumulation time and potential, amount of carbon nanotubes for the sensitive assay of idarubicin were studied as details. Under the optimized conditions, idarubicin gave a linear response in the range 9.36×10?8–1.87×10?6 M for modified glassy carbon and 9.36×10?8–9.36×10?7 M for modified edge plane pyrolytic graphite electrodes. The detection limits were found as 1.87×10?8 M and 3.75×10?8 M based on modified glassy carbon and edge plane pyrolytic graphite electrodes, respectively. Interfering species such as ascorbic acid, dopamine, and aspirin showed no interference with the selective determination of idarubicin. The analyzing method was fully validated and successfully applied for the determination of idarubicin in its pharmaceutical dosage form. The possible oxidation mechanism of idarubicin was also discussed. The results revealed that the modified electrodes showed an obvious electrocatalytic activity toward the oxidation of idarubicin by a remarkable enhancement in the current response compared with bare electrodes.  相似文献   

3.
Selective dopamine (DA) determinations using porous‐carbon‐modified glassy carbon electrodes (GCE) in the presence of ascorbic acid (AA) were studied. The effects of structure textures and surface functional groups of the porous carbons on the electrochemical behavior of DA was analyzed based on both cyclic voltammetry (CV) and differential pulse voltammetry (DPV) measurements. The differential pulse voltammetry of DA on the modified GCE was determined in the presence of 400‐fold excess of AA, and the linear determination ranges of 0.05–0.99, 0.20–1.96, and 0.6–12.60 μM with the lowest detected concentrations of 4.5×10?3, 4.4×10?2, and 0.33 μM were obtained on the mesoporous carbon, mesoporous carbon with carboxylic and amino groups modified electrodes, respectively.  相似文献   

4.
A modified carbon paste electrode with SiO2/SnO2/Phosphate/Meldola's blue, SSPMelB, was used to study the electrocatalytic oxidation of ascorbic acid by cyclic voltammetry and chronoamperometry. The adsorbed dye mediates ascorbic acid oxidation at an anodic potential of 0.04 V vs. saturated calomel electrode (SCE) at pH 7.0, in 0.5 mol L?1 solution. The linear range of the sensor is between 4.0×10?7 and 2.0×10?3 mol L?1, with a limit of detection of 4.0×10?7 mol L?1. This novel electrode shows good analytical performance for determination of ascorbic acid in medicine and commercial fruit juice.  相似文献   

5.
Electrochemical behavior of dopamine at the RuO2‐modified vertically aligned carbon nanotubes electrode was investigated by cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The RuO2‐modified carbon nanotube electrode showed higher electrocatalytic activity towards the oxidation of dopamine than the MWNTs electrode in 0.10 M phosphate buffer solution. At an applied potential of +0.4 V, the RuO2/MWNTs electrode exhibited a wide detection range up to 3.6×10?3 M with detection limit of 6.0×10?8 M (signal/noise=3) for dopamine determination. Meanwhile, the optimized sensor for dopamine displayed a sensitivity of 83.8 μA mM?1 and response time of 5 s with addition of 0.20 mM dopamine. In addition, DPV experiment revealed that interfering species such as ascorbic acid and uric acid could be effectively avoided. The RuO2/MWNTs electrode presents stable, highly sensitive, favorable selectivity and fast amperometric response of dopamine.  相似文献   

6.
《Electroanalysis》2006,18(12):1193-1201
A chemically modified carbon paste electrode with 2,7‐bis(ferrocenyl ethyl)fluoren‐9‐one (2,7‐BFEFMCPE) was employed to study the electrocatalytic oxidation of ascorbic acid in aqueous solution using cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The diffusion coefficient (D=1.89×10?5 cm2 s?1), and the kinetic parameter such as the electron transfer coefficient, α (=0.42) of ascorbic acid oxidation at the surface of 2,7‐BFEFMCPE was determined using electrochemical approaches. It has been found that under an optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such an electrode occurs at a potential about 300 mV less positive than that of an unmodified carbon paste electrode. The catalytic oxidation peak currents show a linear dependence on the ascorbic acid concentration and linear analytical curves were obtained in the ranges of 8.0×10?5 M–2.0×10?3 M and 3.1×10?5 M–3.3×10?3 M of ascorbic acid with correlation coefficients of 0.9980 and 0.9976 in cyclic voltammetry and differential pulse voltammetry, respectively. The detection limits (2δ) were determined to be 2.9×10?5 M and 9.0×10?6 M with cyclic voltammetry and differential pulse voltammetry, respectively. This method was also examined for determination of ascorbic acid in pharmaceutical preparations.  相似文献   

7.
The behaviour of bovine serum albumin in cyclic voltammetry and differential-pulse adsorptive stripping voltammetry is described. Under the optimized conditions, with an accumulation potential of +0.15 V (vs. Ag/AgCl) and accumulation times of 50 s or 120 s, linear calibration graphs were obtained for 1.0–4.0×10?8 M BSA and 0.2–1.5×10?8 M BSA, respectively.  相似文献   

8.
Flavocytochrome b2 (L-lactate :cytochrome c reductase, E.C. 1.1.2.3) from Hansenula anomala was entrapped on the surface of electrodes modified with various kinds of carbon black. The electrocatalytic oxidation of a reduced enzyme by the electroactive surface groups of carbon black enables this enzyme electrode to be used for the determination of lactate. The electrodes operate at ?0.2 to ?0.1 V vs. SCE (pH 7.0), which is low enough to avoid interference from ascorbic acid. Linear calibration graphs up to 0.5 mM lactate were obtained. Electrochemical measurements of lactate in human blood plasma and cell culture fluids showed good agreement with the results of spectrophotometric measurements.  相似文献   

9.
A modified electrode was prepared using electrodeposition methods to immobilize caffeic acid (CAF) onto the surface of a glassy carbon electrode (GCE) to create a polymer suitable for biosensor development. The polymer film coverage of the surface bound species was further optimized using electrodeposition methods, thus increasing the surface coverage to ca. 10?9 mol cm?2. Using cyclic voltammetry, the modified carbon electrode was used to facilitate and observe the electrocatalytic oxidation of coenzymes such as NADH, cysteine, and glutathione at different concentrations. A calibration curve was determined in each case within the concentration range; 300 nM to 10 mM, with the limits of detection (LOD) of 246 µM, 99 µM, 2.2 µM for NADH, cysteine, and glutathione respectively.  相似文献   

10.
A voltammetric method using a poly(1‐methylpyrrole) modified glassy carbon electrode was developed for the quantification of adrenaline. The modified electrode exhibited stable and sensitive current responses towards adrenaline. Compared with a bare GCE, the modified electrode exhibits a remarkable shift of the oxidation potentials of adrenaline in the cathodic direction and a drastic enhancement of the anodic current response. The separation between anodic and cathodic peak potentials (ΔEp) for adrenaline is 30 mV in 0.1 M phosphate buffer solution (PBS) at pH 4.0 at modified glassy carbon electrodes. The linear current response was obtained in the range of 7.5 × 10?7 to 2.0 × 10?4 M with a detection limit of 1.68 × 10?7 M for adrenaline by square wave voltammetry. The poly(1‐methypyrrole)/GCE was also effective to simultaneously determine adrenaline, ascorbic acid and uric acid in a mixture and resolved the overlapping anodic peaks of these three species into three well‐defined voltammetric peaks in cyclic voltammetry. The modified electrode has been successfully applied for the determination of adrenaline in pharmaceuticals. The proposed method showed excellent stability and reproducibility.  相似文献   

11.
《Electroanalysis》2004,16(15):1244-1253
This work deals with the study of polymers electrogenerated from different catechols at glassy carbon electrodes and the analytical applications of the resulting modified electrodes for dopamine quantification and glucose biosensing. The electropolymerization was performed from a 3.0×10?3 M catechol solution (catechol, dopamine, norepinephrine, epinephrine or L ‐dopa in a 0.050 M phosphate buffer pH 7.40) by applying 1.00 V for 60 min. The properties of the polymers are very dependent on the nature of the catechol, L ‐dopa being the best. Glassy carbon electrodes modified with melanic polymers electrogenerated from L ‐dopa and norepinephrine were found to be suitable for dopamine determinations in flow systems, although the behavior was highly dependent on the nature of the monomer. Detection limits of 5.0 nM dopamine and interferences of 9.0 and 2.6% for 5.0×10?4 M ascorbic acid and 5.0×10?5 M dopac, respectively, were obtained at the glassy carbon electrode modified with a melanin‐type polymer generated from L ‐dopa (using 1.0×10?3 M AA in the measurement solution). The advantages of using a melanin‐type polymer generated from dopamine to improve the selectivity of glucose biosensors based on carbon paste electrodes containing Pt and glucose oxidase (GOx) are also discussed. The resulting bioelectrodes combines the high sensitivity of metallized electrodes with the selectivity given by the polymeric layer. They exhibit excellent performance for glucose with a rapid response (around 10 seconds per sample), a wide linear range (up to 2.5×10?2 M glucose), low detection limits (143 μM) and a highly reproducible response (R.S.D of 4.9%). The bioelectrodes are highly stable and almost free from the interference of large excess of easily oxidizable compounds found in biological fluids, such as ascorbic acid (AA), uric acid (UA) and acetaminophen.  相似文献   

12.
《Electroanalysis》2006,18(15):1523-1530
In this study, a glassy carbon electrode (GC) was modified with an electropolymerized film of 1‐naphthylamine (1‐NAP) with a subsequent overoxidation treatment in 0.2 M sodium hydroxide solution. This polymer p‐1‐NAPox film coated GC electrode was used for the selective determination of dopamine (DA) in the presence of a triple concentration of ascorbic acid (AA).These studies were performed using cyclic voltammetry and square‐wave voltammetry at physiological pH. p‐1‐NAPox shows an attractive permselectivity, a marked enhancement of the current response and antifouling properties when compared to a bare GC electrode activated in basic media. With a preconcentration time of 3 minutes at open circuit, linear calibration plots were obtained for DA in buffer solution (pH 7.4) over the concentration range from 1×10?6–1×10?4 M with a detection limit of 1.59×10?7 M.  相似文献   

13.
《Electroanalysis》2005,17(19):1740-1745
A p‐chloranil modified carbon paste electrode was constructed and the electrochemical behavior of this electrode was studied in the aqueous solution with different pH. From the E1/2–pH diagram for this compound the values of formal potential E0' and pKa of some different redox and acid‐base couples depending on the solution pH were estimated. The diffusion coefficient, D, value for p‐chloranil was estimated 1.5×10?7 cm2 s?1. It has been shown by direct current cyclic voltammetry and double potential step chronoamperometry, that this p‐chloranil incorporated carbon paste electrode, can catalyze the oxidation of ascorbic acid in the aqueous buffered solution. Under the optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such an electrode occurs at a potential about 325 mV less positive than that at an unmodified carbon past electrode. The catalytic oxidation peak currents was linearly dependent on the ascorbic acid concentration and a linear calibration curve was obtained in the range of 7×10?5 M–4×10?3 M of ascorbic acid with a correlation coefficient of 0.9998. The limit of detection (3σ) was determined as 3.5×10 ?5 M. This method was used as simple, selective and precise voltammetric method for determination of ascorbic acid in pharmaceutical preparations.  相似文献   

14.
《Analytical letters》2012,45(2):175-192
ABSTRACT

The preparation and electrochemical characteristics of electrodes modified by cobalt complexes of N, N' - bis(salicylidene)-ethane -1, 2- diamine (salen) are described. A cobalt-salen polymer film modified electrode has strong electro-catalytic effects for the oxidation of ascorbic acid. The anodic peak potential of ascorbic acid shifted negatively for 400 m V. The catalytic reaction rate constant determined by rotating disk experiments is 7.08×105 mol s?1 cm3. The catalytic mechanism and the effect of film thickness are discussed. A sensitive voltammetric response for ascorbic acid was obtained covering a linear range from 1.0×10?6 to 1.0×10?3 mol-L?1 The modified electrode showed good stability and reproducibility. The electrode was used to the determination of ascorbic acid in fruit juices and showed promising results compared with conventional methods. The electro-catalytic effect of several metal-salen complexes and a similar Schiff base derivative for ascorbic acid was compared.  相似文献   

15.
This work describes the development, electrochemical characterization and utilization of a cobalt phthalocyanine modified carbon nanotube electrode for the quantitative determination of dopamine in 0.2 mol L?1 phosphate buffer contaminated with high concentration of ascorbic acid. The electrode surface was analyzed by cyclic voltammetry and electrochemical impedance spectroscopy which showed a modified surface presenting a charge transfer resistance of 500 Ω, against the 16.46 kΩ value found for the bare glassy carbon surface. A pseudo rate constant value of 5.4×10?4 cm s?1 for dopamine oxidation was calculated. Voltammetric experiments showed a shift of the peak potential of DA oxidation to less positive value at 390 mV as compared with that of a bare GC electrode at 570 mV. The electrochemical determination of dopamine, in presence of ascorbic acid in concentrations up to 0.1 mol L?1 by differential pulse voltammetry, yielded a detection limit as low as 2.56×10?7 mol L?1.  相似文献   

16.
The electrochemical polymerization of glycine on carbon ionic liquid electrode (CILE) was described. The presence of ionic liquid on the surface of CILE facilitated the electropolymerization of glycine. The polyglycine modified CILE provided a valid and simple approach to selectively detect dopamine in the presence of AA in physiological environment. The proposed sensor not only decreased the voltammetric responses of AA but also dramatically enhanced the oxidation peak current of DA compared to bare CILE. Using square wave voltammetry, the modified CILE showed good electrochemical behavior to DA, a linear range of 1.0×10?7–3.0×10?4 M in the presence of 1 mM ascorbic acid (AA) and a detection limit of 5.0×10?9 M was estimated (S/N=3).  相似文献   

17.
Glassy carbon electrodes are modified by coating with dicyclohexyl-18-crown-6 in Nafion-117. The electrode is used for a very sensitive anodic stripping voltammetric determination of silver. High sensitivity is obtained owing to the release of crown molecules from the silver-crown complex during the deposition. The detection limit is 2×10?12 M after electrodeposition for 30 min. The recommended supporting electrolyte is 4×10?3–7×10?3 M potassium chloride in 0.01 M nitric acid with a deposition potential of ?0.30 V vs. SCE and a linear potential scan. Three typical calibration graphs were linear over the range 2×10?11–1×10?8 M for deposition times of 30, 20 and 8 min, respectively. The silver content of reagent-grade ammonium nitrate was found to be 0.48×10?4% with a relative standard deviation of 3.7% (n=7) for parallel determinations.  相似文献   

18.
PtRu nanoparticles were supported on multiwall carbon nanotubes (MWNTs), which were further fabricated as an electrode for nonenzymatic glucose sensing. Transmission electron microscope and X‐ray diffraction patterns were used for characterization of the PtRu nanoparticles on MWNTs. Cyclic voltammetry and chronopotentiometry were applied to investigate the performance of the PtRu/MWNTs nanocomposite electrode for nonenzymatic oxidation of glucose. The PtRu/MWNTs electrode shows high electrocatalytic activity towards the oxidation of glucose in 0.1 M NaOH solution and thus can be used to selectively detect glucose. Under the optimal potential (+0.55 V vs. Ag/AgCl), the biosensor effectively performs a selective electrochemical analysis of glucose in the presence of common interferents, such as ascorbic acid (AA), dopamine (DP) and uric acid (UA). Wide linear calibration ranging from 1 mM to 15 mM, high sensitivity of 28.26 μA cm?2 mM?1, low detection limit of 2.5×10?5 M, and fast response time of 10 s were achieved for the detection of glucose at the PtRu/MWNTs electrode.  相似文献   

19.
A simple and sensitive method for simultaneously measuring dopamine (DA), ascorbic acid (AA), and uric acid (UA) using a poly(1‐aminoanthracene) and carbon nanotubes nanocomposite electrode is presented. The experimental parameters for composite film synthesis as well as the variables related to simultaneous determination of DA, AA, and UA were optimized at the same time using fractional factorial and Doehlert designs. The use of carbon nanotubes and poly(1‐aminoanthracene) in association with a cathodic pretreatment led to three well‐defined oxidation peaks at potentials around ?0.039, 0.180 and 0.351 V (vs. Ag/AgCl) for AA, DA, and UA, respectively. Using differential pulse voltammetry, calibration curves for AA, DA, and UA were obtained over the range of 0.16–3.12×10?3 mol L?1, 3.54–136×10?6 mol L?1, and 0.76–2.92×10?3 mol L?1, with detection limits of 3.95×10?5 mol L?1, 2.90×10?7 mol L?1, and 4.22×10?5 mol L?1, respectively. The proposed method was successfully applied to determine DA, AA, and UA in biological samples with good results.  相似文献   

20.
Differential pulse and cyclic voltammetry were applied for the oxidation of mixture of uric acid and ascorbic acid at the surface of carbon paste/cobalt Schiff base composite electrode. The electrooxidation of these compounds at bare electrode is sluggish, and there is no suitable peak separation between them. However, using cobalt methyl salophen as modifier, two well-defined anodic waves with a considerable enhancement in the peak current and a remarkable peak potential separation near 315 mV are obtained. It can improve the kinetics of electron transfer for both compounds remarkably. All these improvements are created because of the electrocatalytic property of cobalt Schiff base complex. The effect of some parameters such as pH and scan rates were studied. All the anodic peak currents for the oxidation of ascorbic acid and uric acid shifted toward more negative potential with an increase in pH, revealing that protons have taken part in their electrode reaction processes. The best peak separation with appropriate current was obtained for pH 4.0. A linear range of 5.0?×?10?4 to 1.0?×?10?8 and 1.0?×?10?3 to 1.0?×?10?8 M with detection limit of 8.0?×?10?9 and 8.0?×?10?9 M was obtained for ascorbic acid and uric acid using differential pulse voltammetry at the surface of modified electrode, respectively. Analytical utility of the modified electrode has been examined successfully using human urine samples and vitamin C commercial tablets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号