首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A solid state copper(II) ion sensor is reported based on the application of electropolymerized undoped (neutral) polycarbazole (PCz) and polyindole (PIn) modified electrodes. The new sensor shows high selectivity to Cu2+ ions with a detection limit of 10–5 M. PCz and PIn are formed respectively by the anodic oxidation of 50 mM carbazole and 5 mM indole monomers in dichloromethane containing 0.1 M tetrabutylammonium perchlorate on a platinum electrode using a single compartment cell. Potentiostatic polymerization of both the monomers are carried out at 1.3 V and 1.0 V vs. Ag/AgCl, respectively. Perchlorate ions were electrochemically removed from the polymer films by applying – 0.2 V vs. Ag/AgCl. Polymer-coated electrodes are incubated in 1 M KCl solution for 8 h followed by incubation in distilled water for 2 h before using as a metal ion sensor. The undoped PCz and PIn electrodes were found to be highly selective and sensitive for Cu2+ ions with little selectivity for Pb2+ and negligible response towards Ag+, Hg2+, Cu+, Ni2+, Co2+, Fe2+, Fe3+ or Zn2+. Potentiometric responses for Cu2+ ions are recorded for both the sensor electrodes together with a double-junction Ag/AgCl reference electrode. Calibration curves for Cu2+ are reported for both ion sensors. The polymer-modified electrodes were found to be stable for several weeks. Electronic Publication  相似文献   

2.
《Electroanalysis》2003,15(3):175-182
Three different kinds of glassy carbon (GC‐R, GC‐K, GC‐G) were equally pretreated, further modified with electrochemically deposited Prussian Blue and used as sensors for hydrogen peroxide at an applied potential of ?50 mV (vs. Ag|AgCl). Their performance was evaluated with respect to the following parameters: the coverage and electrochemistry of the electrodeposited Prussian Blue, the sensitivity and the lower limit of detection for hydrogen peroxide, and the operational stability of the sensors. GC‐R showed the best behavior concerning the surface coverage and the operational stability of the electrodeposited Prussian Blue. For this electrode the sensitivity for hydrogen peroxide (10 μM) was 0.25 A/M cm2 and the detection limit was 0.1 μM. Scanning electron microscopy was used to study the surfaces of the three electrodes before and after the electrodeposition of Prussian Blue and to search for the reason for the three different behaviors between the different glassy carbon materials. The Prussian Blue modified GC‐R was also used for the construction of a glucose biosensor based on immobilizing glucose oxidase in Nafion membranes on top of electrodeposited Prussian Blue layer. The operational stability of the glucose biosensors was studied in the flow injection mode at an applied potential of ?50 mV (vs. Ag|AgCl) and alternatively injecting standard solutions of hydrogen peroxide (10 μM) and glucose (1 mM) for 3 h. For the GC‐R based biosensor a 2.8% decrease of the initial glucose response was observed.  相似文献   

3.
Standard potentials (εM0′j)T of solid-state connected silver-silver chloride membrane electrodes (“chloride ion-sensitive electrodes”) in saturated and in 3.5 M (25°C) aqueous KCl solution (Ag|AgCl|KCl(sat'd or 3.5 M)||…) were measured between 5 and 90°C. The cells with transference comprised a Pt,H2 electrode half-cell with NBS (DIN) phosphate buffer solution D. Identical thermodynamic behaviour of the membrane electrodes and respective 2nd kind silver-silver chloride electrodes and the small differences ΔE0 of their standard potentials EM0 and E0, both reported in Part I of this work [1], allowed the application of the membrane electrode data to determine also standard potentials (ε0′j)T of the respective silver-silver chloride reference electrode of the second kind with “fixed potential” (Ag|AgCl(sat'd), KCl(sat'd or 3.5 M)6…). The results are discussed and compared with literature data.  相似文献   

4.
《Analytical letters》2012,45(7-8):1301-1309
An amperometric biosensor for the determination of L-lactic acid in probiotic yogurts has been assembled using L-lactate dehydrogenase (EC 1.1.1.27, LDH) entrapped in 1% (v/v) neutralized Nafion® solution deposited on Variamine blue redox mediator modified screen-printed electrodes. The Variamine blue was previously covalently linked to oxidized single-walled carbon nanotubes and used for modifying screen-printed electrodes. The electrochemical cell, containing the L-lactate biosensor operating at an applied working potential of +200 mV vs. Ag|AgCl, was coupled with a microdialysis fiber and connected with a flow system, thus obtaining a microdialysis based sampling experimental set-up. Various analytical parameters, such as the cofactor concentration (2 mM, NAD+), the flow rate (10.5 μL/min), the applied working potential (+200 mV vs. Ag|AgCl), the working buffer (50 mM phosphate buffer +0.1 M KCl), and pH (7.5), were optimized in batch amperometric experiments. The dynamic linear working range was comprised between 2·10?4 and 1·10?3 M. The proposed biosensor was challenged with real samples of yogurt, properly diluted in working buffer, and the performances of the L-lactate biosensor were compared with a commercially available kit for the determination of L-lactic acid in foodstuffs from R-Biopharm GmbH, Germany, showing a good agreement.  相似文献   

5.
A copper containing Prussian Blue analogue was incorporated into a conducting polypyrrole film. The modified electrode was synthesized through an electrochemical two-step methodology leading to very stable and homogeneous hybrid films. These electrodes were proved to show excellent catalytic properties towards H2O2 detection, with a performance higher than those observed for Prussian Blue and other analogues. Electrochemical impedance spectroscopy experiments demonstrated that the excellent performance of these hybrid films is strongly related to the electronic conductivity of the polymeric matrix that is wiring the copper hexacyanoferrate sites. A glucose biosensor was built-up by the immobilization of glucose oxidase; the sensitivity obtained being higher than other biosensors reported in the literature even in Na+ containing electrolytes.  相似文献   

6.
Platinized platinum based hydrogen gas electrodes, Pt(Pt)|H2(g)|H+(aq), and silver‐silver chloride electrodes, Ag|AgCl|Cl? (aq), make up the Harned cell, without transfer, working in the potentiometric mode at Cl? concentrations and ionic strengths, I, below 0.1 mol kg?1, for assigning primary pH values to reference pH buffer solutions. This work reports on experiments performed at higher I and Cl? solutions up to 0.7 mol kg?1, aiming at addressing seawater conditions with results of equally high quality. In the course of measurements, the occasional occurrence of highly unstable potentials denoted electrode malfunction; Pt metal surfaces observed by SEM/EDS and XRD exhibit strong Ag and Cl peaks corresponding to the presence of AgCl crystals deposited at both surfaces.  相似文献   

7.
Very sensitive, low cost and reliable NADH and H2O2 sensors were realised and used for development of enzyme based biosensors. The active surface of the electrodes was modified with a nanocomposite obtained by modification of SWNT with a proper mediator: Meldola Blue (for NADH) and Prussian Blue (for H2O2). Low applied potential of − 50 mV vs. Ag/AgCl reference electrode proved the synergistic effect of nanocomposite materials towards NADH and H2O2 detection. Biosensors for malic acid and alkylphenols have been developed, using mediator-functionalised-SWNT-based electrodes and two different classes of enzymes: NAD+-dependent dehydrogenases and peroxidases. Immobilization of the enzymes was realised using a series of different procedures — adsorption, Nafion membrane, sol–gel and glutaraldehyde, in order to find the best configuration for a good operational stability. A higher sensitivity comparing with other reported biosensors of about 12.41 mA/M·cm2 was obtained for l-malic acid biosensor with enzyme immobilised in Nafion membrane. Phenol, 4-t-octylphenol and 4-n-nonylphenol were used as standard compounds for HRP based biosensor. Fast biosensor response and comparable detection limit with HPLC methods were achieved.  相似文献   

8.
Pd/Ag films were electrolessly deposited onto p-silicon (100)-activated seed layers of Ag and Pd, respectively, in the solution of 0.005 mol l−1 AgNO3 + 0.005 mol l−1 PdCl2 + 4.5 mol l−1 NH3 + 0.16 mol l−1 Na2EDTA+0.1 mol l−1 NH2NH2 (pH 10.5) at room temperature. The morphology and composition of the films were studied comparatively by using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Cathodic polarization curves for hydrogen evolution were recorded in 0.5-mol l−1 H2SO4 without illumination, in which the obtained films served as working electrodes. The experimental results show that the film obtained on the Ag seed layer was rather a pure Ag film and not a Pd/Ag film, and the Ag deposition rate on Pd sites was much faster than that on Ag sites.  相似文献   

9.
Potentiometric and electrochemical impedance spectroscopic investigations of calcium-selective membranes containing poly(vinylchloride), dioctylphenylphosphonate, calcium (bis[4-(1,1,3,3-tetramethylbutyl)phenyl] phosphate) and different amounts of the lipophilic anionic additive tridodecylmethylammonium chloride were carried out. The addition of the lipophilic additive changes the properties of calcium-selective electrodes, e.g. slope and calcium selectivity. The selectivity for calcium in presence of H+, Na+, K+, NH4 +, Mg2+, Ba2+, Sr2+ and (C2H5)4N+ was measured by three different methods, namely separate solution method, fixed interference method and matched potential method. Membranes with different concentration ratios between the calcium-exchanger and tridodecylmethylammonium chloride were investigated within half a year. The tendency of changing from cationic into anionic response for membranes containing nearly equivalent concentrations of cation- and anion-exchanger was shown. This inversion of the electrode response depends not only upon the concentration ratio of both ion-exchangers but also upon the total concentration of calcium-exchanger. Electrochemical impedance spectroscopy was used for monitoring the development of membrane resistances during a soaking period of one month. Based on these results dielectric constants for the calcium-selective membranes depending on the membrane composition were determined. Furthermore, the dependence of the membrane resistance on the membrane thickness and the concentration of tridodecylmethylammonium chloride was evaluated.  相似文献   

10.
Shi H  Yang Y  Huang J  Zhao Z  Xu X  Anzai J  Osa T  Chen Q 《Talanta》2006,70(4):852-858
An amperometric choline biosensor was developed by immobilizing choline oxidase (ChOx) in a layer-by-layer (LBL) multilayer film on a platinum (Pt) electrode modified with Prussian blue (PB). 6-O-Ethoxytrimethylammoniochitosan chloride (EACC) was used to prepare the ChOx LBL films. The choline biosensor was used at 0.0 V versus Ag/AgCl to detect choline and exhibited good characteristics such as relative low detection limit (5 × 10−7 M), short response time (within 10 s), high sensitivity (88.6 μA mM−1 cm−2) and a good selectivity. The results were explained based on the ultrathin nature of the LBL films and the low operating potential that could be due to the efficient catalytic reduction of H2O2 by PB. In addition, the effects of pH, temperature and applied potential on the amperometric response of choline biosensor were evaluated. The apparent Michaelis-Menten constant was found to be (0.083 ± 0.001) ×10−3 M. The biosensor showed excellent long-term storage stability, which originates from a strong adsorption of ChOx in the EACC multilayer film. When the present choline biosensor was applied to the analysis of phosphatidylcholine in serum samples, the measurement values agreed satisfactorily with those by a hospital method.  相似文献   

11.
Multifunctional glass windows that combine energy storage and electrochromism have been obtained by facile thermal evaporation and electrodeposition methods. For example, WO3 films that had been deposited on fluorine‐doped tin oxide (FTO) glass exhibited a high specific capacitance of 639.8 F g?1. Their color changed from transparent to deep blue with an abrupt decrease in optical transmittance from 91.3 % to 15.1 % at a wavelength of 633 nm when a voltage of ?0.6 V (vs. Ag/AgCl) was applied, demonstrating its excellent energy‐storage and electrochromism properties. As a second example, a polyaniline‐based pseudocapacitive glass was also developed, and its color can change from green to blue. A large‐scale pseudocapacitive WO3‐based glass window (15×15 cm2) was fabricated as a prototype. Such smart pseudocapacitive glass windows show great potential in functioning as electrochromic windows and concurrently powering electronic devices, such as mobile phones or laptops.  相似文献   

12.
Potentiometric and electrochemical impedance spectroscopic investigations of calcium-selective membranes containing poly(vinylchloride), dioctylphenylphosphonate, calcium (bis[4-(1,1,3,3-tetramethylbutyl)phenyl] phosphate) and different amounts of the lipophilic anionic additive tridodecylmethylammonium chloride were carried out. The addition of the lipophilic additive changes the properties of calcium-selective electrodes, e.g. slope and calcium selectivity. The selectivity for calcium in presence of H+, Na+, K+, NH4 +, Mg2+, Ba2+, Sr2+ and (C2H5)4N+ was measured by three different methods, namely separate solution method, fixed interference method and matched potential method. Membranes with different concentration ratios between the calcium-exchanger and tridodecylmethylammonium chloride were investigated within half a year. The tendency of changing from cationic into anionic response for membranes containing nearly equivalent concentrations of cation- and anion-exchanger was shown. This inversion of the electrode response depends not only upon the concentration ratio of both ion-exchangers but also upon the total concentration of calcium-exchanger. Electrochemical impedance spectroscopy was used for monitoring the development of membrane resistances during a soaking period of one month. Based on these results dielectric constants for the calcium-selective membranes depending on the membrane composition were determined. Furthermore, the dependence of the membrane resistance on the membrane thickness and the concentration of tridodecylmethylammonium chloride was evaluated. Received: 21 July 1998 / Revised: 16 October 1998 / Accepted: 23 October 1998  相似文献   

13.
Wang  Zhen  Lai  Cunyuan  Lu  Baoyang  Guo  Wenjuan  Yue  Ruirui  Pei  Meishan  Xu  Jingkun 《Journal of Solid State Electrochemistry》2012,16(5):1907-1915
Bromo-group-substituted oligopyrene films were electrochemically synthesized by direct anodic oxidation of 1-bromopyrene (BrP) in boron trifluoride diethyl etherate (BFEE). The oxidation potential of BrP was measured to be approximately 0.52 V (vs. Ag/AgCl), which was much lower than that detected in a neutral electrolyte such as acetonitrile (1.2 V vs. Ag/AgCl) and CH2Cl2 (1.25 V vs. Ag/AgCl). Oligo(1-bromopyrene) (OBrP) films showed good redox activity in both BFEE and concentrated sulfuric acid. Fourier transform infrared spectroscopy, 1H NMR, and theoretical calculations showed that the electropolymerization of the BrP monomer mainly occurred at the C(3), C(6), and C(8) positions. As-formed OBrP was a typical blue light emitter with fluorescent quantum yields of 0.27, also emitted strong and bright blue photoluminescence at excitation of 365 nm UV light. Furthermore, the films were readily soluble in dimethyl sulfoxide, CH2Cl2, acetonitrile, and acetone. All these results indicate that the striking OBrP films have many potential applications in various fields, such as optoelectronic materials, DNA fluorescence probes, and electrochemical sensors.  相似文献   

14.
《Electroanalysis》2017,29(8):1985-1993
Polytyramine (PT) has been electro‐deposited onto multi‐walled carbon nanotube (MWCNT) modified glassy carbon (GC) electrodes via oxidation of tyramine in 0.1 M H3PO4 by cycling the potential over the range of −400 mV to 1300 mV (versus Ag/AgCl). The reactivity of the resulting chemically‐modified electrodes was characterized using cyclic voltammetry in the presence and absence of reduced nicotinamide adenine dinucleotide (NADH). The modified electrodes displayed electrochemical activity due to the formation of quinone species and were catalytically active towards NADH oxidation by lowering the oxidation peak potential by 170 mV compared to the value of the MWCNT modified electrode with a peak potential of 180±10 mV (versus Ag/AgCl). The MWCNT/PT surface was further characterized using SEM and XPS methods, which indicated that a thin polymeric film had been formed on the electrode surface. The present work demonstrates the advantage of using PT as a platform that combines both the immobilization of alcohol dehydrogenase (ADH) and the mediation of NADH oxidation at a low overpotential essential to the design of high performance ethanol biosensors, all within an easily electropolymerizable film. The resulting biosensor displayed an ethanol sensitivity of 4.28±0.06 μA mM−1 cm−2, a linear range between 0.1 mM and 0.5 mM and a detection limit of 10 μM.  相似文献   

15.
《Electroanalysis》2004,16(15):1211-1220
The electrochemical redox behavior of the polynuclear mixed valence ruthenium oxide cyanometallate complexes (mvRuOx? MCN, M=Fe, Cr, Ni, Cu, Ru and Pt) have been systematically studied in this report by using three redox sensitive organic probes of glucose, ethanol and formaldehyde. The results were interpreted by the well‐established ruthenium oxide and Prussian blue chemistry. The mvRuOx? MCN, under the category of Ru‐based Prussian blue analogue, was found to possess superior electrocatalytic activity than either ruthenium oxide or Prussian blue in acidic mediums. The electrogenerated oxy/hydroxy‐RuVII state (at +1.1 V vs. Ag/AgCl) was unusually stabilized in the mvRuOx? MCN matrix without any disproportion reaction in acidic environments. In contrast to those of earlier studies, possible structure in terms of the ? RuIII/II? NC? M? and ? RuIII/II? O? RuVII/VI? sites was proposed here. Enzyme‐less analytical detection of glucose in acidic conditions was first time demonstrated with sensitivity comparable to that of ruthenium oxide‐based electrodes in alkaline solutions.  相似文献   

16.
A method for the fabrication of ion-selective all-solid-state microelectrodes is presented. The ion-to-electron transduction process takes place into the transducer material. In this approach, AgI-Ag2O-V2O5 glasses, which exhibit ionic and electrical conductivity are applied as ion-to-electron transducers of polymeric membrane microelectrodes. All-solid-state electrodes based on potassium-sensitive poly(vinyl chloride) membranes, deposited directly on the surface of glass composites, exhibited theoretical responses. Their selectivity and durability were comparable to planar microelectrodes containing an internal electrolyte immobilized in the intermediate hydrogel layer. The only disadvantage of the proposed structures was their limited reproducibility. Moreover, it was found that the unmodified AgI-Ag2O-V2O5 glasses can be applied as ion-sensitive membrane of solid-state microelectrodes for the determination of Ag+ and I ions.  相似文献   

17.
We studied the electrochemical and magnetic properties of NiFe Prussian blue. The NiFe Prussian blue was synthesized on Ni electrodes in the form of thin films by an electrochemical technique. Measurements of its magnetic properties show that NiFe Prussian blue with the FeIII-low spin (LS)–CN–NiII structure exhibits ferromagnetic properties, with T c (critical temperature)=25 K. On the other hand, the reduced form, which has the FeII-LS–CN–NiII structure, is paramagnetic. This means that the magnetic properties can be controlled between ferromagnetic and paramagnetic by an electrochemical method. Furthermore, it is well known that NiFe Prussian blue exhibits electrochromic properties. Hence, this compound is a multifunctional, molecule-based compound in which optical and magnetic properties can be controlled by an electrochemical redox reaction. Contribution to the special issue on “Magnetic field effects in Electrochemistry.”  相似文献   

18.
《Electroanalysis》2004,16(3):242-246
Industrial waste cinder (CFe*) has been utilized as a stable anchoring matrix for self‐assembling of Fe(CN)63? as hybrid Prussian blue units (PB, *Fe3+FeII(CN)6) on a screen‐printed carbon electrode (SPE) for efficient catalytic applications. The waste cinder was found to be a composite of calcium and iron silicates similar to glass matrix by X‐ray photoelectron spectroscopic (XPS) study. The hybrid PB formations were confirmed by both FT‐IR and electrochemical methods. Most importantly, the free iron (Fe*) ion bound to the non‐bridging oxygen terminals of the silicates was found to play a key role in the PB formation. The self‐assembled PB hybrid on the cinder‐modified screen‐printed electrodes (designated as PBCFe*‐SPE) improved linear detection range and sensitivity for H2O2 mediated oxidation than those obtained at a classical PB‐SPE in 0.1 M, pH 2 KCl/HCl base electrolyte at 0.0 V (vs. Ag/AgCl) by amperometric batch analysis.  相似文献   

19.
《Sensors and Actuators》1986,9(3):179-197
The purpose of this work is to fabricate and characterize Ag/AgCl electrodes made on a silicon chip at the wafer level with integrated circuit-compatible fabrication techniques. Such electrodes are useful as reference electrodes in several kinds of chemical sensors. Two types of electrode were investigated. The first type uses an evaporated AgCl layer that is patterned with lift-off photolithography. The second type is formed by exposing a selected part of the silver substrate to a KCrO3Cl solution. Both types of electrode give the thermodynamically expected potential response to variations of Cl ion concentration. The potential generated by the KCrO3Cl-formed electrodes was more stable, however. Auger electron spectroscopy depth profiles indicate that immersion in a KCrO3Cl solution produces a thin layer of AgCl on top of a layer of AgO. The low electronic resistance of AgO then reduces the measured series resistance of the KCrO3Cl-formed electrodes. Impedance plane plots and the impedance as a function of frequency were measured for both types of electrode, and the impedance of the evaporated AgCl electrodes was indeed considerably higher. The impedance measurements could be successfully modelled by assuming a Randles equivalent circuit for the AgCl/electrolyte interface. For the KCrO3Cl-formed electrodes, the impedance was modified by the porosity these electrodes manifested.  相似文献   

20.
Composite materials of Prussian blue–polypyrrole (PB/PPy) on the surface of indium tin oxide (ITO)-coated glasses were obtained via one-step chemical (redox) and one-stage electrochemical procedures in mixed solution of iron (III), hexacyanoferrate (III), and pyrrole with various concentration ratios of components in nitrate supporting electrolyte. Electrochemical stability of composite films depends on the amount of Py in synthetic solution, whereas color contrast coefficient values depend on the type of synthetic procedure. PB/PPy film electrochromic response (tested by spectroelectrochemical potentiodynamic measurements) was compared with response of both pure PB and pure PPy films. It was shown that degradation of composite films occurs due to PB component instability in Prussian white form. The highest value of color contrast coefficient and great electrochemical stability were revealed for composite films obtained via redox-synthesis procedure from solution with 0.1 mM [Fe3+ + Fe(CN)6 3?] and 1.0 mM Ру (PB/PPy-Ch-1:1:10 system).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号