首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel chemiluminescence (CL) method for the determination of hydrogen peroxide is described. Method is based on the transition metals in highest oxidation state complex, which include diperiodatoargentate (DPA) and diperiodatonickelate (DPN) and show excellent sensitisation on the luminol-H2O2 CL reaction with low luminol concentration in alkaline medium. In particular, the sensitiser which was previously reported (such as Co2+, Cu2+, Ni2+, Mn2+, Fe3+, Cr3+, KIO4, K3Fe(CN)6 etc.) to be unobserved CL due to poor sensitisation with such low concentration of luminol which makes the method hold high selectivity. Based on this observation, the detection limits were 6.5?×?10?9?mol?L?1 and 1.1?×?10?8?mol?L?1 hydrogen peroxide for the DPN- and DPA-luminol CL systems, respectively. The relative CL intensity was linear with the hydrogen peroxide concentration in the range of 2.0?×?10?8–6.0?×?10?6?mol?L?1 and 4.0?×?10?8–4.0?×?10?6?mol?L?1 for the DPN- and DPA-luminol CL systems, respectively. The proposed method had good reproducibility with a relative standard deviation of 3.4% (8.0?×?10?7?mol?L?1, n?=?7) and 1.0% (2.0?×?10?6?mol?L?1, n?=?7) for the DPN- and DPA-luminol CL systems, respectively. A satisfactory result has been gained for the determination of H2O2 in rainwater and artificial lake water by use of the proposed method.  相似文献   

2.
Chuanyin Liu  Jiming Hu 《Electroanalysis》2008,20(10):1067-1072
Hemoglobin was entrapped in composite electrodeposited chitosan‐multiwall carbon nanotubes (MCNTs) film by assembling gold nanoparticles and hemoglobin step by step. In phosphate buffer solution (pH 7), a pair of well‐defined and quasireversible redox peaks appeared with formal potential at ?0.289 V and peak separation of 100 mV. The redox peaks respected for the direct electrochemistry of hemoglobin at the surface of chitosan‐MCNTs‐gold nanoparticles modified electrode. The parameters of experiments have also been optimized. The composite electrode showed excellent electrocatalysis to peroxide hydrogen and oxygen, the peak current was linearly proportional to H2O2 concentration in the range from 1×10?6 mol/L to 4.7×10?4 mol/L with a detection limit of 5.0×10?7 mol/L, and this biosensor exhibited high stability, good reproducibility and better selectivity. The biosensor showed a Michaelis–Menten kinetic response as H2O2 concentration is larger than 5.0×10?4 mol/L, the apparent Michaelis–Menten constant for hydrogen peroxide was calculated to be 1.61 μmol/L.  相似文献   

3.
IntroductionTheoxidationofmanyclinicalsubstancesinbodyfluidsproducesaquantityofhydrogenperoxide ,sothedetermina tionoftracehydrogenperoxideisofconsiderableimportanceinclinicalchemistry .1Further,themonitoringofhydrogenperoxideisalsonecessarytoenvironmentalsciencesinceitisakeyspeciesinthereactionsofthetroposphere,beingin volvedinimportantreactionssuchasthecatalyzedoruncat alyzedaqueousphaseoxidationofSO2 andtheultraviolet en hancedaqueousphaseoxidationoforganicspecies.2 Uptonow ,variousmethods…  相似文献   

4.
Silver (Ag) nanoparticles were directly electrodeposited on multi-walled carbon nanotubes (MWCNT) in AgNO3/LiNO3 containing EDTA (ethylenediaminetetraacetic acid). The structure and nature of the resulting Ag/MWNT composite were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), and the distribution shape of Ag nanoparticles was found to be dependent on the presence of EDTA. The modified electrode showed excellent electrocatalytic activity to redox reaction of hydrogen peroxide and the mechanism of hydrogen peroxide was partly reversible procession with oxidation and reduction peaks at 0.77 and -0.83 V, respectively. The oxidation and reduction peak currents were linearly related to hydrogen peroxide concentration in the range of 1×10^-6-3×10^-4 and 1 ×10^-8-7× 10^-4 mol·L^-1 with correlation coefficients of 0.996 and 0.986, and 3s-detection limit of 9 × 10^-7 and 7 × 10^-9 mol·L^-1.  相似文献   

5.
《Analytical letters》2012,45(17):3147-3160
Abstract

The multiwalled carbon nanotube–nickel hydroxide composite film used to modify glassy carbon electrode was prepared and confirmed by transmission electron microscopy and cyclic voltammetry. The process and mechanism of film formation were discussed in detail. The electrode modified with the composite film exhibited good catalytic activity toward electrochemical oxidation of hydrogen peroxide in 0.1 mol/L sodium hydroxide solution. Various factors affecting the electrocatalytic activity of nickel hydroxide film were investigated. The anodic peak current increased with the increased concentration of hydrogen peroxide. The linear range for the determination of hydrogen peroxide was from 1.5 × 10?6 mol/L to 2.5 × 10?3 mol/L with the detection limit 6.1 × 10?7 mol/L (S/N = 3). And the proposed method was applied to the determination of hydrogen peroxide in disinfector with higher sensitivity and lower detection limit.  相似文献   

6.
IntroductionThelevelofglucoseinbloodorurineindicateshyper andhypoglycaemia ,bothofwhichcanresultfromavarietyofendocrinedisorders .1 4 Therapidandreliabledetermi nationofglucoselevelisaroutineprojectinclinicchem istry.Urinesamplesaresaferandmoreconvenientthanbloodones .Meanwhile ,theconcentrationofglucoseinserumiscloselyassociatedwiththatinurine .2 4 Eventhoughglucoseelectrodeshavebeensuccessfullyusedinseruminclinicalapplication ,thequestionstillremainedofhowtodetecttheglucoselevelinurine ,wh…  相似文献   

7.
《Analytical letters》2012,45(15):2496-2508
Abstract

A biosensor for hydrogen peroxide was fabricated by co-immobilizing cadmium telluride (CdTe) nanoparticles, chitosan, and hemoglobin (Hb) matrix. There was a pair of nearly reversible redox peaks around ?0.360 V, and the electrochemical behavior of Hb was a surface-controlled process, with an electron-transfer rate constant of 1.36 s?1 and surface coverage of 2.62 × 10?10 mol cm?2. Fourier transform infrared (FT-IR) spectra and ultraviolet–visible (UV-vis) spectra indicated that Hb sustained its natural conformation. It was demonstrated that Hb in the matrix kept its bioactivity and exhibited catalytic ability toward H2O2, with a response ranging from 7.44 × 10?6 to 6.95 × 10?4 M and a detection limit of 2.23 × 10?6 M.  相似文献   

8.
Hemoglobin (Hb) and silver–silver oxide (Ag–Ag2O) nanoparticles were co-immobilized on a bare silver electrode surface by cyclic voltammetry, and were characterized by UV–vis reflection spectroscopy, scanning electron microscopy, and electrochemical impedance spectroscopy. The immobilized Hb was shown to maintain its biological activity well. Direct electron transfer between Hb and the resulting electrode was achieved without the aid of any electron mediator. The reduction currents to hydrogen peroxide (H2O2) at co-immobilized electrodes showed a linear relationship with H2O2 concentration over a concentration range from 6.0?×?10?6 to 5.0?×?10?2 mol L?1, and a detection limit of 2.0?×?10?6 mol L?1 (S/N?=?3).  相似文献   

9.
In an ammonium buffer medium at pH 8.9–9.5, hemin exhibits mimetic peroxidase activity, and has a catalytic effect on the oxidative decoloration of bromopyrogallol red (BPR) with hydrogen peroxide. On this basis and in presence of ethanol as an effect-enhancing agent, a spectrophotometric determination of hydrogen peroxide is described with an apparent molar absorptivity of 4.00×104?l?mol?1?cm?1 and a linear range from 3.2×10?7 to 3.2×10?5?mol?l?1. BPR has advantages over some of widely used chromogenic substrates in aspects of sensitivity, simplicity and detection wavelength, while hemin has better stability than peroxidase. The system can be easily coupled with a glucose oxidase-catalyzed reaction, and glucose in the concentration range of 6.0×10?7? 3.2×10?5?mol?l?1 is spectrophotometrically determined. The method has been applied to the analyses of synthetic water and human serum samples. The Michaelis parameters and the mechanism of the mimetic peroxidase reaction are also investigated.  相似文献   

10.
In this paper, a pre‐anodized inlaying ultrathin carbon paste electrode (PAIUCPE) with 316L as a matrix was constructed by a simple and fast electrochemical pretreatment. Using xanthine (Xa) and hypoxanthine (HXa) as the target compounds, the pH effects compositions of buffer solution, the accumulation times, hydrogen bond catalysis, degree of auxiliary electrode reaction on the size of peak currents (Ip) of Xa and HXa was discussed in detail. Also, it was proposed that Xa and HXa were respectively absorbed at the surface of PAIUCPE through hydrogen bonding. The influencing mechanisms of the PAIUCEP on electrochemical oxidation of Xa and HXa were explained in detail. Moreover, the linear relationships for the Xa and HXa were obtained in the range of 6×10?8–3×10?5 mol/L and 2×10?7–7×10?5 mol/L, respectively. The detection limits for the Xa and HXa were 1.2×10?8 mol/L and 5.7×10?8 mol/L, respectively. Moreover, this proposed method could be applied to determine the Xa and HXa in human urine simultaneously with satisfactory results.  相似文献   

11.
A solid-state reactor for detection of hydrogen peroxide in aqueous samples by peroxyoxalate chemiluminescence is described. Bis(2,4,6-trichlorophenyl)oxalate in solid form is packed into a bed reactor, which eliminates mixing problems and facilitates the instrumental development. Perylene is added as a sensitizer to a water/acetonitrile (20:80) carrier stream into which the samples (200–600 μl) are injected. Detection limits of 6 × 10?9 M H2O2 (0.2 μg l?1) are obtained with both a commercial and a home-made luminescence detector. Calibration graphs are linear up to 10?5 M. The r.s.d. for 2 × 10?7 M (6.7 μg?1) hydrogen peroxide (n = 10) is 2.8%. Sample throughput is ca. 120 h?1.  相似文献   

12.
王树青  陈峻  林祥钦 《中国化学》2004,22(4):360-364
IntroductionAmperometricbiosensorofhydrogenperoxideisofpracticalimportancebecauseofitswideapplicationsinchemical,biological,clinical,environmentalandmanyotherfields.Forimprovementofsensor抯quality,vari-ouskindsofchemicalmodificationmethodshavebeendevelopedforreducingredoxoverpotentialsofH2O2atelectrodesurfaces,increasingthedetectionsensitivity,linearrange,stabilityandlivetime.Ithasbeenshownthattheuseofsub-micrometersizedmetalparticlessuchasPt-blackcansignificantlyimprovethequalityofthebiosens…  相似文献   

13.
Nanostructured alpha‐nickel hydroxide (α‐Ni(OH)2) immobilized on a Fluorine‐doped Tin Oxide (FTO) surface was explored for the construction of hydrogen peroxide amperometric Flow Injection Analysis (FIA) sensors. Their notable electrocatalytic activity and heterogeneous electron‐transfer rate were confirmed by the appearance of a broad and intense peak associated with the oxidation of hydrogen peroxide and the enhancement of sensibility in hydrodynamic conditions. The α‐Ni(OH)2 electrodes exhibited a broad dynamic range (5×10?6 to 1×10?3 mol L?1), low detection limit (2×10?7 mol L?1), good repeatability (RSD=1.29 % for 20 successive analyses), and a sensitivity greater than 500 µA mmol?1 L?1 cm?2.  相似文献   

14.
过玮  何盈盈  宋俊峰 《中国化学》2003,21(12):1630-1635
IntroductionAnionicsurfactants (AS)arewidelyusedinhouse holdorindustrialcleaners ,cosmetics ,researchlaborato ries,textiles ,pharmacies ,etc .,solargeamountofASreleasedintotheenvironmentarecausingpollution .There foreitisnecessarytodevelopafast,simpleandcosteffec tivemethodforthedeterminationofAS .Theofficialmeth odsrecommendedforthedeterminationofASarespec trophotometryandpotentialtitration .SpectrophotometricmethodanditsvariationsarebasedonthemeasurementofthecoloredassociatesofASwithposi…  相似文献   

15.
《Analytical letters》2012,45(4):661-676
Abstract

A novel amperometric sensor of hydrogen peroxide was constructed. Hemoglobin (Hb) was successfully immobilized on nanometer‐sized SiO2, which was supported by chitosan. Chitosan was acted as dispersant. The determination of hydrogen peroxide was performed in the presence of an electron mediator hydroquinone. Hb immobilized on the SiO2/chitosan composite film displayed excellent electrocatalytical activity to the reduction of H2O2. The linear range of detection towards H2O2 was from 6.25×10?7 to 1.63×10?4mol/L with a detection limit of 1.8×10?7mol/L (S/N=3). The apparent Michaelis‐Menten constant (K app M) was found to be 0.75mmol/L.  相似文献   

16.
《Analytical letters》2012,45(9):1507-1515
A uric acid biosensor was fabricated by the Langmuir–Blodgett (LB) technique to immobilize the uricase on chitosan/Prussian blue (CS/PB) prefunctionalized indium-tin oxide (ITO) electrode. The effects of ionic strengths, acidity of subphase, and uricase amount on the film were studied. The electrochemical properties of the uricase/n-nonadecanoic acid (UOx/NA) LB film proved that CS/PB was a good electro-catalyst for the reduction of hydrogen peroxide produced by enzymatic reaction of UOx, and protein molecules retained their natural electro-catalytic activity. The linear range of uric acid detection was from 5 × 10?6 mol/L to 1.15 × 10?3 mol/L with a detection limit of 1.8 × 10?7 mol/L.  相似文献   

17.
Tryptophan is an important amino acid for humans with a significant role in cell metabolism. Depletion of tryptophan in the human body may contribute to diseases and development of disorders among the human population. It is, therefore, very important to have a reliable, stable, sustainable, and cost-effective analytical method for the determination of tryptophan. Tryptophan was determined using sequential injection–zone fluidics analysis with luminol–hydrogen peroxide and the Firefly with its unique liquid core waveguide flow-cell design as chemiluminescence tubular reactor with a high-sensitivity photomultiplier tube. This was based on an intense chemiluminescence formation of tryptophan in luminol–hydrogen peroxide inside the tubular reactor for measurement. The chemiluminescence intensity was linear with tryptophan in the range of 1.0?×?10?6 to 1.0?×?10?3?mol/L, and the limit of detection was 7.5?×?10?7?mol/L. The precision for the method was 3.6% (relative standard deviation) for six measurements of 1.0?×?10?4?mol/L tryptophan. The proposed method has been used to determine tryptophan in pharmaceutical formulations. The system is relatively fast for online assays. Eighty seconds are required to complete one cycle providing a throughput of 45 samples/h. The proposed sequential injection analysis–zone fluidics–chemiluminescence system for the assay of tryptophan in certain specific pharmaceutical capsules is simple, reliable, sustainable, and convenient with relatively low-cost consumption of reagents.  相似文献   

18.
The cellulose acetate covered Prussian blue modified glassy carbon electrode (GCE/PB/CA) was fabricated as a novel hydrogen peroxide sensor. It was shown by scanning electron microscope (SEM) and atomic force microscope (AFM) that Prussian blue was covered and protected by cellulose acetate perfectly. The modified electrode showed a good electrocatalytic activity for H2O2 reduction in neutral aqueous solution. H2O2 was detected amperometrically in 0.05 mol/L phosphate buffer solutions (pH 7.0, containing 0.1 mol/L KCl as supporting electrolyte) at an applied potential of ?0.2 V (vs. SCE). The response current was proportional to the concentration of H2O2 in the range of 1.0×10?5 mol/L to 2.5×10?4 mol/L with the detection limit of 2.2×10?6 mol/L at a signal to noise ratio 3.  相似文献   

19.
Fluorometric methods for the determination of phosphate (1.5 × 10?6–3.1 × 10?6M), diphosphate (7.0 × 10?7–2.0 × 10?6M), and triphosphate (2.0 × 10?7–2.7 × 10?6M) are described. The analytical procedure is based on the inhibition of polyphosphate ions on the oxidation of pyridoxal 2-pyridylhydrazone (PPH) by hydrogen peroxide, catalyzed by low concentrations of lead(II) ions. The reactions are followed by means of the rate of appearance of the fluorescence (λex = 355 nm, λem = 425 nm). The effect of the variables is studied. The kinetic parameters of the reactions are reported and rate equations are suggested. The results are interpreted according to the discernment of the chemistry of complex formations.  相似文献   

20.
A biosensor based on stearic acid-graphite powder modified with sweet potato (Ipomoea batatas (L.) Lam.) tissue as peroxidase source was constructed and applied in organic solvents. Several parameters were studied to evaluate the performance of this biosensor such as stearic acid-graphite powder and tissue composition, type and concentration of supporting electrolyte, organic solvents, water/organic solvent ratio (% v/v) and hydrogen peroxide concentration. After selection of the best conditions, the biosensor was applied for the determination of hydroquinone in cosmetic creams in methanol. At the peroxidase electrode hydroquinone is oxidized in the presence of hydrogen peroxide and the radical formed was reduced back electrochemically at –180 mV vs Ag/AgCl (3.0 mol L–1 KCl). The reduction current obtained was proportional to the concentration of hydroquinone from 6.2 × 10–5 to 1.5 × 10–3 mol L–1 (r = 0.9990) with a detection limit of 8.5 × 10–6 mol L–1. The recovery of hydroquinone from two samples ranged from 98.8 to 104.1% and an RSD lower than 1.0% for a solution containing ¶7.3 × 10–4 mol L–1 hydroquinone and 1.0 × 10–3 mol L–1 hydrogen peroxide in 0.10 mol L–1 tetrabutylammonium bromide methanol-phosphate buffer solution (95:5% v/v) (n = 10) was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号