首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Analytical letters》2012,45(5):673-685
Abstract

An indicator phase for a flow-through chemiluminescence (CL) sensor composed of ordered surfactant assemblies, a polymer and a catalyst was evaluated by measuring adrenaline. The method is based on use of Mn (III)-porphyrin immobilized on a bilayer membrane contained in a blended film, prepared by incorporating dioctadecyl-dimethylammonium chloride into polyvinyl chloride. The sensor consisted of a Pyrex glass tube (30 mm × 5 mm i.d.) packed with silica glass wool, on which the indicator phase was coated, and a photomultiplier tube. The blend film functioned as a favorable reaction medium for the adrenaline CL, and further enhanced CL was observed with the immobilized catalyst. This indicator phase permitted adrenaline to be detected down to 3 × 10?6 M with a 20 μl injection into a 0.3 M NaOH carrier solution. The relative standard deviation (n = 10) was 1.0% for 5 × 10?5 M adrenaline. For 80 successive injections of 5 × 10?5 M adrenaline, the variation of the CL signal was within the relative standard deviation. Almost the same sensitivity and precision were observed with the indicator phase stored in water for at least 3 days. The sensor was successfully applied to determine adrenaline in drug samples.  相似文献   

2.
A biomimetic potentiometric field monitoring device was developed for the trace determination of phorate (O,O‐diethyl S‐ethyl thiomethyl phophorodithioate) in natural waters. The sensing element was fabricated by the inclusion of phorate imprinted polymer materials in the polyvinyl chloride (PVC) matrix. The sensor surface can be reused without conditioning unlike most other conventional sensors. Operational parameters such as amount and nature of plasticizers sensing material, pH and response time were optimized. The response characteristics of the non‐imprinted (NIPIM) and imprinted polymer inclusion membrane (IPIM) sensors for phorate were compared under optimum conditions. The IPIM sensor responds linearly to phorate in the concentration in the ranges 1×10?9 to 1×10?6 M and 1×10?6 to 1×10?5 M of different slopes with a detection limit of 1×10?9 M. The selectivity was tested with various common organophosphorous (OP) pesticides and herbicides. In addition to superior sensitivity and selectivity of IPIM over NIPIM‐based sensor, IPIM‐based phorate sensor was found to be stable for 3 months and can be used for more than 40 times without any loss in sensitivity. The applicability for analyzing ground, river and tap‐water samples was successfully demonstrated via recovery studies.  相似文献   

3.
The linear-sweep polarographic determination of active chlorine is based on its reaction with phenylthiourea in acidic phosphate buffer (pH 2.5) containing potassium chloride. The product, C,C-diphenyldithiodiformamidine, is strongly adsorbed and then reduced at a mercury electrode with two peaks at about ?0.35 V and ?0.87 V (vs. SCE). In the presence of 0.05 M potassium chloride, the potential of the first peak shifts positively to ?0.31 V. This peak provides high sensitivity and selectivity for the determination of traces of active chlorine. The linear range is 1×10?7?2.5×10?5 M and the detection limit is 5×10?8 M (3.6 μg l?1). The method is used for the direct determination of active chlorine in tap water. The mechanism of the reaction was studied by cyclic voltammetry, electrolysis and potentiometric titration. The first peak (?0.35 V) is ascribed to the reduction of a mercury (II) sulfide film produced by reaction of the adsorbed dithio product with mercury. In the presence of 0.05 M chloride, the formation of a mixed HgS·xHg2Cl2 film shifts the peak to ?0.31 V.  相似文献   

4.
A new environmentally friendly Au nanoparticles (Au NPs) synthesis in glycerol by using ultraviolet irradiation and without extra‐added stabilizers is described. The synthesis proposed in this work may impact on the non‐polluting production of noble nanoparticles with simple chemicals normally found in standard laboratories. These Au NPs were used to modify a carbon paste electrode (CPE) without having to separate them from the reaction medium. This green electrode was used as an electrochemical sensor for the nitrite detection in water. At the optimum conditions the green sensor presented a linear response in the 2.0×10?7–1.5×10?5 M concentration range, a good detection sensitivity (0.268 A L mol?1), and a low detection limit of 2.0×10?7 M of nitrite. The proposed modified green CPE was used to determine nitrite in tap water samples.  相似文献   

5.
A silicon carbide nanoparticle‐coated glassy carbon electrode (SiCNPs‐GCE) was employed for electrochemical determination of Quinalphos (QNP) using different electroanalytical techniques. QNP showed an enhancement in the reduction peak current at SiCNPs modified GCE in pH 7.0 (BR Buffer). The peak current was found to be linear with the QNP concentration in the range from 6.69×10?9 to 1.34×10?6 M (r=0.995) with detection limit of 1.34×10?9 M (S/N=3). The developed sensor (SiCNPs‐GCE) was employed for QNP determination in tap water, lake water, soil, mango as well as in biological samples.  相似文献   

6.
《Electroanalysis》2006,18(21):2115-2120
A new type of voltammetric sensor, Langmuir–Blodgett film of p‐tert‐butylthiacalix[4]arene modified glassy carbon electrode, was advanced and used for determining copper at trace levels by differential pulse stripping voltammetry. Calibration plot was found to be linear in the range of 2×10?8 M to 5×10?6 M; the detection limit was 2×10?9 M. Possible recognition mechanism was also discussed. From determination of Copper in real samples (river, lake and tap water) it can be concluded that the method is rapid, sensitive in determining of copper and can be used in the analysis of natural water samples.  相似文献   

7.
《Electroanalysis》2004,16(15):1236-1243
Potentiostatic polymerization of polypyrrole doped with dodecylsulfate anion (DS?) was carried out in situ over a tubular composite (graphite‐epoxy resin) support in order to develop a potentiometric DS? sensor (TISE) suitable for flow injection analysis (FIA). The sensibility of the TISE was maximized using the SIMPLEX algorithm in terms of the concentration of the pyrrole monomer, the concentration of DS?, the potential imposed and polymerization time. Response times between 2 and 4 minutes were observed. The analytical parameters obtained with the flow system were compared with those obtained in batch studies. In both, flow and batch analysis, potential vs. DS? concentration curves displayed two linear regions with different slopes. Flow analysis for DS? ion brings a total linear range of 1.58×10?5 M to 3.88×10?3 M with a maximum sensibility of 36.4 mV/concentration decade, meanwhile in batch studies the total linear range found was of 6.31×10?6 M to 1.0×10?3 M with a maximum sensibility of 54.49 mV. The flow system response pH range was from 5 to 8. The reproducibility in terms of the relative error of the mean of different experiments was 1.58%. Two salient features of the system designed and built are worthy of mention: the sensor presented high selectivity to the dodecyl sulfate ion as compared to other inorganic anions including other anionic surfactants. The sensor lifetime in the FIA system by means of the sensibility changes was found to be of approximately four months.  相似文献   

8.
The electrolytic sensor described is based on the oxidation of nitrite at a platinum electrode modified with chemisorbed iodine and coated with a thin layer of quaternized poly(4-vinylpyridine), qPVP. The sealed sensor uses an anion-exchange membrane to separate Donnan transport of nitrite across the membrane and controlled potential electrolysis at the Pt/qPVP indicator electrode. The sensor has a linear response to nitrate concentration in aqueous samples over the range 4 × 10?6?2 × 10?3 M nitrite. The detection limit is 2 × 10?6 M nitrite. The sensor is free of interference by nitrate, dissolved oxygen, cations, and many neutral species. Anions that are electroactive at 0.7 V vs. Ag/ AgCl would interfere, but they are uncommon in most samples. Initial tests with lake water samples suggest that this sensor is unaffected by this matrix. The system was also evaluated for monitoring nitrite levels in spiked meat extracts.  相似文献   

9.
Chemically modified carbon paste eletrodes are prepared by incorporating appropriate quantities of a cation-exchange resin directly into the paste mixture. Ionic analytes can be preconcentrated on these electrodes by an ion-exchange reaction rather than electrolytic plating. Differential pulse voltammetry is used to quantify the accumulated ions. The response is characterized with respect to preconcentration period, bulk concentration, pH, paste composition, reproducibility, and other variables. Copper ion is used as a test system. The procedure exhibits good linearity for 6.25 × 10?5?3.0 × 10?4 M copper(II) ions and the peak current varies linearly with preconcentration time between 1 and 7 min for the conditions used.  相似文献   

10.
A novel enzyme-free electrochemical sensor for H2O2 was fabricated by modifying an indium tin oxide (ITO) support with (3-aminopropyl) trimethoxysilane to yield an interface for the assembly of colloidal gold. Gold nanoparticles (AuNPs) were then immobilized on the substrate via self-assembly. Atomic force microscopy showed the presence of a monolayer of well-dispersed AuNPs with an average size of ~4 nm. The electrochemical behavior of the resultant AuNP/ITO-modified electrode and its response to hydrogen peroxide were studied by cyclic voltammetry. This non-enzymatic and mediator-free electrode exhibits a linear response in the range from 3.0?×?10?5 M to 1.0?×?10?3 M (M?=?mol?·?L?1) with a correlation coefficient of 0.999. The limit of detection is as low as 10 nM (for S/N?=?3). The sensor is stable, gives well reproducible results, and is deemed to represent a promising tool for electrochemical sensing.
Figure
AuNPs/ITO modified electrode prepared by self-assembly method exhibit good electrocatalytic activity towards enzyme-free detection H2O2. The linear range of typical electrode is between 3.0?×?10?5 M and 1.0?×?10?3 M with a correlation coefficient of 0.999 and the limit detection is down to 1.0?×?10?8 M.  相似文献   

11.
A new sol‐gel carbon composite electrode using hexacyanoferrate (HCF)‐Th(IV) ion pair as a suitable modifier is fabricated in the present study. The Th(IV)‐HCF‐sol‐gel carbon composite electrode (THCF‐CCE) has been prepared by mixing methyl trimethoxysilan (MTMOS) sol‐gel precursor and carbon powder with ion pair and then to fix in a plastic tube. Cyclic voltammetry and chronoamperometry were employed to study the electrochemical and electrocatalytic properties of proposed electrode. The apparent charge transfer rate constant, ks, and transfer coefficient, α, for electron transfer between ion‐pair and sol‐gel CPE were calculated as 3.10 ± 0.10 s?1 and 0.52, respectively. The THCF‐CCE showed a significant electrocatalytic activity towards oxidation of ascorbic acid (AA) and dopamine (DA) in 0.1 M acidic phosphate buffer solutions (pH 3) containing KCl as a supporting electrolyte. The mean value of the diffusion coefficients for ascorbic acid and dopamine were found 4.12 × 10?5 and 4.43 × 10?5 (cm2s?1), respectively. High stability, good reproducibility, rapid response, easy surface regeneration and fabrication are the important characteristics of the proposed sensor. The resulting peaks from the electrocatalytic oxidation of AA and DA were well resolved with good sensitivity. A linear response was observed for AA and DA in the concentration range of 1 × 10?5 to 3 × 10?3 M and 4 × 10?6 to 2.2 × 10?4 M, respectively.  相似文献   

12.
Tripropylamine (TPA) is a highly toxic and carcinogenic compound, therefore, TPA concentration in water must be monitored to protect health and the environment. In this paper, an electrochemiluminescent (ECL) sensor was fabricated by immobilising Ru(bpy)32+‐modified CuO nanoparticles (NPs) on a TiO2 nanotube array (TN) electrode. Compared to an ECL sensor fabricated by immobilising Ru(bpy)32+ on a TN only electrode, the as‐prepared sensor displays a 30 % enhanced ECL signal and a detection limit of 9.6×10?10 M at a signal‐to‐noise ratio=3 with the concentration of TPA in a range 1×10?9 to 1×10?5 M. The results from this study indicated a new approach for the enhancement of performance of ECL sensor in detecting TPA in water.  相似文献   

13.
A novel flower like 3D nickel/manganese dioxide (Ni/MnO2) nanocomposite was synthesized by a kind of simple electrochemical method and the formation mechanism of flower like structure was also researched. In addition, morphology and composition of the nanocomposite were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), and X‐ray photoelectron spectroscopy (XPS). Then the Ni/MnO2 nanocomposites were applied to fabricate electrochemical non‐enzymatic glucose sensor. The electrochemical investigation for the sensor indicated that it possessed an excellent electrocatalytic property for glucose, and could applied to the quantification of glucose with a linear range from 2.5×10?7 to 3.5×10?3 M, a sensitivity of 1.04 mA mM?1 cm?2, and a detection limit of 1×10?7 M (S/N=3). The proposed sensor also presented attractive features such as interference‐free, and long‐term stability. The present study provided a general platform for the one‐step synthesis of nanomaterials with novel structure and can be extended to other optical, electronic and magnetic nanocompounds.  相似文献   

14.
《Analytical letters》2012,45(2):298-311
Abstract

A polyvinyl chloride (PVC) based membrane sensor for terbium ions was prepared by employing Hematoporphyrin (HP) as an ionophore. The sensor revealed a very good selectivity (expect for the Fe3+ion) with respect to common alkali, alkaline earth and heavy metal ions. The plasticized membrane electrode exhibits a Nernstian response for Tb3+ ions over a wide concentration range (1.0 × 10?6 ? 1.0 × 10?2 M) with a slope of 19.8±0.3 mV per decade and low detection limit of 7.4 × 10?7 M. The developed sensor was used in determination of F? in mouth wash preparation sample.  相似文献   

15.
A novel optical sensor has been proposed for sensitive determination of Cu(II) ion in aqueous solutions. The copper sensing membrane was prepared by incorporating Qsal (2-(2-hydroxyphenyl)-3H-anthra[2,1-d]imidazole-6,11-dione) as ionophore in the plasticized PVC membrane containing tributyl phosphate (TBP) as plasticizer. The membrane responds to Cu(II) ion by changing color reversibly from yellow to dark red in acetate buffer solution at pH 4.0. The proposed sensor displays a linear range of 6.3 × 10?7?1.00 × 10?4 M with a limit of detection of 3.3 × 10?7 M. The response time of the optical sensor was about 3?C5 min, depending on the concentration of Cu(II) ions. The selectivity of the optical sensor to Cu(II) ions in acetate buffer is good. The sensor can readily be regenerated by hydrochloric acid (0.1 M). The optical sensor is fully reversible. The proposed optical sensor was applied to the determination of Cu(II) in environmental water samples.  相似文献   

16.
An optical sensor responding to Al(III), Mg(II), Zn(II) and Cd(II) is prepared by immobilizing quinolin-8-ol-5-sulfonate (QS) on an ion-exchange resin and attaching the resin to the end of a trifurcated fiber-optic bundle. Immobilization leads to weak fluorescence from QS and causes shifts in the fluorescence spectra of the QS/metal complexes. Detection limits for the metal ions studied are all below 1 × 10?6 M. Response to metal ion concentration is nonlinear. The shape of the response fits a model that assumes a 1:1 metal/QS chelate is formed. Forrnation constants for immobilized QS complexes calculated from the model are similar to those observed for dissolved QS. Immobilized and dissolved QS behave similarly with respect to pH and interferences.  相似文献   

17.
Gold nanowires were produced by electrodeposition in polycarbonate membrane, with an average diameter of 200 nm and a height of about 2 μm. The nanowire array prepared by the proposed method can be considered as nanoelectrode ensembles (NEEs). An amperometric pesticides sensor based on gold NEEs has been developed and used for determination of phoxim and dimethoate in vegetable samples. The electrochemical performance of the gold NEEs has also been studied by the amperometric method. The electrode provided a linear response over a concentration range of 5.9 × 10?5 to 1.2 × 10?2 M for phoxim with a detection limit of 4.8 × 10?6 M and 6.3 × 10?5 to 1.1 × 10?2 M for dimethoate. This sensor displayed high sensitivity and selectivity, long-term stability and wide linear range. In addition, the ellipsis of enzyme and the reactivation of enzyme make the operation simple. This sensor has been used to determine pesticides in a real vegetable sample.  相似文献   

18.
《Analytical letters》2012,45(6):1057-1070
ABSTRACT

A series piezoelectric quartz crystal (SPQC) sensor has been applied to detect L-glutamic acid and L-lysine acid. The effect of formaldehyde solution on the frequency shift was studied. Two methods were discussed. For the calibration curve method, in a neutralized formaldehyde medium, the linear ranges for determining L-glutamic acid and L-lysine acid were from 7.1×10?6M to 6.5×10?4M and from 6.9×10?6 M to 7.4×10?4 M, respectively, with the detection limit being 7.1×10?6 M and 6.9×10?6 M, the recoveries were 99.2% and 100.1%, the R.S.D were 1.63% (n=6) and 1.83%(n=6), respectively. Frequencimetric tiration method was also described and the lowest titratable concentrations were 8.3×10?5M and 5.5×10?5 M, respectively.  相似文献   

19.
Determination of levodopa and tyrosine as two important species for treatment of Parkinson's disease is described. A novel electrochemical sensor involving graphene oxide/ZnO nanorods (GR/ZnO) nano composite and the graphite screen‐printed electrodes (GSPE) was developed for the simultaneous detection of levodopa and tyrosine. The screen‐printed electrodes with several advantages, including low cost, versatility and miniaturization were employed. On the other hand, the graphene oxide/ZnO nanorods nano composite was casted on the surface of GSPE to obtain GR/ZnO/SPE. The proposed nano sensor has excellent performance such as high sensitivity, good selectivity and analytical application in real samples. The combination of graphene oxide/ZnO nanorods nano composite with the screen‐printed electrode is favorable for amplifying electrochemical signals. Under optimized conditions square wave voltammetry (SWV) exhibited linear dynamic ranges from 1.0×10?6 to 1.0×10?3 M and 1.0×10?6 to 8.0×10?4 M with detection limits of 4.5×10?7 M and 3.4×10?7 M for levodopa and tyrosine respectively.  相似文献   

20.
A poly(4-vinylpyridine-co-aniline) (poly(4VP-co-Ani))-based solid-state ion sensor for cadmium (Cd) was developed. This was obtained from studies done on a number of selected monomers electropolymerized onto a poly(4vinylpyridine) (P4VP)-modified graphite pencil rod, surface characterizing them and then analyzing their performances as a Cd(II) ion sensor. Among them, the membrane of poly(4VP-co-Ani) at a mole ratio of 0.05:0.15 was found to be the best. The fabricated poly(4VP-co-Ani) solid-state electrode had a linear response of 1?×?10?6 to 1?×?10?2?M Cd2+, slope of 29.4?±?0.5 mV decade?1, detection limit of 7.94?×?10?7?M Cd2+, and response time of 15 s at pH 4.5–8.5 with excellent selectivity. The sensor was operationally stable within a period of 3 months. The proposed sensor was tested for determination of Cd2+ in environmental, plant, and pharmaceutical samples. The analyses were comparable to the standard atomic absorption spectrophotometric method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号