首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Analytical letters》2012,45(5):971-984
ABSTRACT

A sensitive catalytic kinetic spectrophotometric method for determining ng ml?1 concentrations of selenium is described. The method, based on the catalytic effect of Se (IV) on the reduction of azureA by sulphide, is monitored spectrophotometrically at 600 nm. The linearity range of the calibration graph is dependent on the concentration of sulphide. The variables affecting the rate of the reaction were investigated and the optimum conditions were established. The method is simple, rapid, precise, sensitive, free from many interferences and is widely applicable. The limit of detection is 2.5ng ml?1 of Se. The relative standard deviation of seven determinations of 100 ng ml?1 Se was 1.5%. The method was applied to the determination of selenium in spiked water, Kjeldahl tablets, synthetic samples and health care products.  相似文献   

2.
《Analytical letters》2012,45(14):2871-2885
ABSTRACT

The catalytic effect of Se(IV) on the reduction reaction of thionine(TN) by sulfide ion is used for determination of trace amounts of selenium(IV) ion by a kinetic-spectrophotometric method. This new method is simple and highly sensitive. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of the reaction mixture at 598 nm. The fixed time method was used for the first 45s from initiation of the reaction. Under the optimum conditions, in the concentration range of 2-90 ng ml? of selenium(IV), a quite linear regression equation (r = 0.9984, n = 14) was obtained. The experimental detection limit of the method (S/N = 3) was 1.3 ng ml?. The relative standard deviation of ten replicate measurements is 2.51% for a 40 ng ml? solution of selenium. The proposed method is used to the study of selenium (IV,VI) speciation in water at ng ml? levels. This method was extended for the determination of selenium in real samples.  相似文献   

3.
The very sensitive fluorimetric determination of selenium(IV) is based on its oxidation of the non-fluorescent 2-(α-pyridyl)thioquinaldinamide in slightly acidic solution (0.05–0.15 M sulphuric acid). The excitation and emission wavelengths are 350 nm and 500 nm, respectively. Linear calibration graphs are obtained for different ranges of selenium concentration between 0.01 ng ml?1 and 0.5 μg ml?1. Over sixty ions either do not interfere or can be masked in the determination of 1 ng ml?1 Se(IV). The method is applied successfully to various synthetic mixtures and to a native sulphur sample. The reaction is fast and the fluorescent system is stable for 24 hours.  相似文献   

4.
Safavi A  Mirzaee M 《Talanta》2000,51(2):225-230
A sensitive catalytic kinetic spectrofluorimetric method for determining ng ml(-1) of selenium by flow injection analysis has been developed. The method, based on the catalytic effect of Se (IV) on the reduction of resorufin by sulphide, in the presence of cetylpyridinium chloride, is monitored spectrofluorimetrically (lambda(ex)=480 nm; lambda(em)=583 nm). The linearity range of the calibration graph is dependent on the concentration of sulphide. The variables affecting the rate of the reaction were investigated. The method is simple, rapid, precise, sensitive, and widely applicable. The limit of detection is 1 ng ml(-1) Se (IV), and the calibration range is 5-1000 ng ml(-1). Sampling rate is 60 samples h(-1), and the relative standard deviation of 12 determinations of 100 ng ml(-1) Se was 0.76%. The determination of Se (IV) in the presence of Se (VI) and total selenium is described. The method was applied to the determination of Se in selenium tablets, and several synthetic samples.  相似文献   

5.
A simple and sensitive catalytic spectrophotometric method was developed for the determination of trace amounts of selenium. The method is based on the catalytic effect of selenium in form Se(IV) on the reduction of Maxilon Blue-SG by sodium sulfide. Indicator reaction is followed spectrophotometrically by measuring the absorbance change at λmax=654 nm and constant temperature (30.0±0.1 °C) by fixed time method. Selenium could quantitatively be determined in the range 0.004-0.200 μg ml−1 Se(IV) with a detection limit of 0.205 ng ml−1 Se(IV). All of the variables that affected the reaction rate were investigated and established optimum conditions to give maximum sensitivity. The R.S.D.s of the method (N=12) for the Se(IV) concentrations of 0.004, 0.016, 0.040 and 0.160 μg ml−1 are between 2.27 and 0.32%, respectively, and depended on Se(IV) concentration. The interference effect of various anion and cations on the Se(IV) determination was also fully studied. The selectivity of catalytic reaction was greatly improved with the use of the strong cation exchange resin. The developed kinetic-catalytic reaction was applied to the determination of selenium in real samples as Antioxidant-S, Selsun (which is a healthcare product for the treatment of dandruff) and analytical grade sodium metabisulfite, and in spring water samples without any pre-concentration. The acceptable recoveries were obtained by the method for appropriate standard Se(IV) additions. The method is simple, practical and suitable for using in small laboratories owing to its precision, sensitivity and relative selectivity.  相似文献   

6.
A simple, rapid and sensitive flow injection spectrophotometric method for determination of selenium (0.005-1.5 mug ml(-1)) is described. The method is based on the catalytic effect of Se(IV) on the reduction reaction of thionine (TN) with sulphide ion, monitored spectrophotometrically at 598 nm. The detection limit is 5 ng ml(-1) the relative standard deviation for eight replicate measurements is 1.1% for 1 mug ml(-1) of selenium. The sampling rate is 25-30 samples h(-1). The procedure was applied successfully to the determination of selenium in real samples.  相似文献   

7.
A sensitive kinetic spectrophotometric method has been developed for the determination of Se(IV) over the range of 45 to 4000 ng in 10 mL of solution. The method is based on the catalytic effect of Se(IV) on the reduction reaction of bromate by hydrazinium dichloride, with subsequent reaction of Ponceau S with products of the above reaction (chlorine and bromine), causing color changing of Ponceau S. Method development includes optimization of time interval for measurement of slope, pH, reagents concentration, and temperature. The optimized conditions yielded a theoretical detection limit of 33 ng/¶10 mL of solution of Se(IV). The interfering effects were studied and removed. The method was applied to the determination of selenium in spiked water, Kjeldahl tablet, selenium tablet, and shampoo. Vanadium(V) has an inhibition effect on the catalyzed reaction of bromate and hydrazine by selenium. Using this effect, V(V) can be determined in the range of 70 to 2500 ng in 10 mL of solution. The optimization procedure includes pH and selenium concentration. An extraction method was used for interference removal. The method was applied to the determination of vanadium in petroleum.  相似文献   

8.
A simple procedure is described for reducing the chemical interference of heavy metal ions with the hydride—atomic absorption spectroscopic method for the determination of selenium. This is achieved through the formation of stable chlorocomplexes of these ions in 7.5 M HCl. Up to 30 μg Cu(II) ml-1, 500 μg Ni(II) ml-1, and 500 μg Fe(III) ml-1 do not interfere. Recoveries of selenium from standard reference samples, fortified with known interfering concentrations of heavy metals, range between 92 and 101%. The reducing property of hydrochloric acid is used to differentiate between Se(IV) and Se(VI) species.  相似文献   

9.
《Analytical letters》2012,45(10):2065-2073
ABSTRACT

A simple and sensitive kinetic method for the determination of vanadium(V) based on its inhibitory effect on the reduction of thionine by ascorbic acid at pH=5 is described. The reaction rate is monitored spectrophotometrically by measuring the decrease in absorbance of thionine at 598 nm after a fixed time (10 min). The calibration graph is linear in the range of 10 ? 120 ng ml?1 of vanadium(V) and the detection limit is 6 ng ml?1. The relative standard deviation (RSD) for 80 ng ml?1 of V(V) was 0.96% (n=10). The method was successfully applied to the determination of vanadium in a certified reference sample.  相似文献   

10.
A sensitive kinetic spectrophotometric method has been developed for the determination of Se(IV) over the range of 45 to 4000 ng in 10 mL of solution. The method is based on the catalytic effect of Se(IV) on the reduction reaction of bromate by hydrazinium dichloride, with subsequent reaction of Ponceau S with products of the above reaction (chlorine and bromine), causing color changing of Ponceau S. Method development includes optimization of time interval for measurement of slope, pH, reagents concentration, and temperature. The optimized conditions yielded a theoretical detection limit of 33 ng/?10 mL of solution of Se(IV). The interfering effects were studied and removed. The method was applied to the determination of selenium in spiked water, Kjeldahl tablet, selenium tablet, and shampoo. Vanadium(V) has an inhibition effect on the catalyzed reaction of bromate and hydrazine by selenium. Using this effect, V(V) can be determined in the range of 70 to 2500 ng in 10 mL of solution. The optimization procedure includes pH and selenium concentration. An extraction method was used for interference removal. The method was applied to the determination of vanadium in petroleum. Received: 20 October 1998 / Revised: 17 April 1999 / Accepted: 3 June 1999  相似文献   

11.
Zhengjun G  Xinshen Z  Guohe C  Xinfeng X 《Talanta》2005,66(4):1012-1017
A simple, accurate, sensitive and selective flow injection catalytic kinetic spectrophotometric method for rapid determination of trace amounts of selenium is proposed in this paper. The proposed method is based on the accelerating effect of Se(IV) on the reaction of ethexlenediamine tetrecetic acid disodium salt (EDTA) and sodium nitrate with ammonium iron(II) sulfate hexahydrate in acidic media. The absorbance intensity was registered in this reaction solution at 440 nm. The calibration graph is linear in the range of 5 × 10−9-2 × 10−7 and 2 × 10−7-2 × 10−6 g ml−1. The detection limit is 2 × 10−9 g ml−1. The relative standard deviation was 3.4% for 5 × 10−8 g ml−1 Se(IV) (n = 11), 2.7% for 5 × 10−7 g ml−1 Se(IV) (n = 11). This method is very simple, rapid and suitable for automatic and continuous analysis. The presented system has been applied successfully to determination of Se(IV) of seawater samples.  相似文献   

12.
Afkhami A  Madrakian T 《Talanta》2002,58(2):311-317
A simple, accurate, sensitive and selective method is described for rapid determination of ultra-trace quantities of selenium. Selenium (IV) was collected on activated carbon after reduction to elemental Se by l-ascorbic acid. The collected selenium was then determined based on its accelerating effect on the oxidation reaction of methyl orange with bromate in acidic media. Total amount of Se(IV) and Se(VI) were collected on AC after their reduction by hydrazine. Se(IV), Se(VI) and total selenium could be determined by the method. Selenium in the range 10-10 000 ng could be determined by the method. The method was used to the determination of Se(IV), Se(VI) and total selenium in natural water with satisfactory results.  相似文献   

13.
The application of an in situ gold-plated glassy carbon disk electrode to the determination of selenium(IV) by anodic stripping voltammetry is described. A single anodic stripping peak is obtained for solutions containing less than 1 × 10-6 M Se(IV). The minimum concentration detected was 2 × 10-9 M Se(IV). The determination of selenium in NBS SRM 1577 (Bovine Liver) by anodic stripping voltammetry with an in situ goldplated rotating glassy carbon electrode yielded a value of 1.14 ± 0.07 μg Se g-1 compared with a certificate value of 1.1 ± 0.1 μg Se g-1.  相似文献   

14.
《Electroanalysis》2005,17(17):1511-1515
Differential pulse voltammetric determination of selenocystine (SeC) using selenium‐gold film modified glassy carbon electrode ((Se‐Au)/GC) is presented. In 0.10 mol?L?1 KNO3 (pH 3.20) solution, SeC yields a sensitive reduction peak at ?740 mV on (Se‐Au)/GC electrode. The peak current has a linear relationship with the concentration of SeC in the range of 5.0×10?8–7.0×10?4 mol?L?1, and a 3σ detection limit of SeC is 3.0×10?8 mol?L?1. The relative standard deviation of the reduction current at SeC concentration of 10?6 mol?L?1 is 3.88% (n=8) using the same electrode, and 4.19% when using three modified electrodes prepared at different times. The content of SeC in the selenium‐enriched yeast and selenium‐enriched tea is determined. The total selenium in ordinary or selenium‐enriched tea is determined by DAN fluorescence method. The results indicate that in selenium‐enriched yeast about 20% of total selenium is present as SeC and in selenium‐enriched tea SeC is the major form of selenoamino acids. The total selenium content in selenium‐enriched tea soup is 0.09 μgSe/g accounting by 7% compared with that in selenium‐enriched tea. Hence, only a little amount of selenium is utilized by drinking tea, and most selenium still stay in tealeaf. Uncertainty are 22.4% and 16.1% for determination of SeC in selenium‐enriched yeast and selenium‐enriched tea by differential pulse voltammetry (DPV) on (Se‐Au)/GC electrode, respectively.  相似文献   

15.
A novel magnetic dispersive solid phase extraction method using magnetic multi-walled carbon nanotubes modified with 5-mercapto-3-phenyl-1,3,4-thiadiazole-2-thione potassium salt (bismuthiol II) (MMWCNTs@Bis) as the sorbent was developed for the separation and preconcentration of inorganic selenium (IV) prior to its determination by electrothermal atomic absorption spectrometry. The prepared MMWCNTs@Bis sorbent was characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, vibrating sample magnetometer and X-ray diffraction. Total selenium was determined after reduction of Se(VI) to Se(IV) by addition of hydrochloric acid and heating the mixture in a boiling water bath. Se(VI) concentration was determined from the difference between the amounts of total selenium and Se(IV). Under the optimised experimental conditions, an enhancement factor of 196 and a detection limit (based on 3Sb/m) of 0.003 µg L?1 was obtained for aqueous samples. The relative standard deviation at 0.1 µg L?1 concentration level of Se(IV) (n = 6) was found to be 5.2 and 7.7% for intra- and inter-day analysis, respectively. The method was successfully applied to the determination of inorganic selenium species in water and total selenium in food samples.  相似文献   

16.
A Varian Techtron model 63 carbon rod atomizer is used for the atomic absorption spectrometric determination of nanogram quantities of selenium. The pronounced interferences from the matrices in biological digests can be obviated by isolating selenium from sample matrices by precipitation with ascorbic acid. The precision of the determination is improved by incorporating 5000 μg Ni ml?1 in the analytical solutions. Selenium at μg g?1 and sub-μg g?1 levels in a variety of biological samples can be determined. The detection limit is 25 ng Se g?1.  相似文献   

17.
The determination of selenium(IV) by voltammetry through the formation of a piazselenol with 3,3′-diaminobenzidine (DAB) is described. At pH 1.5 and with a large excess of DAB, the formation of piazselenol is quantitative. In a borate-buffered electrolyte at pH 9, the piazselenol gives reduction peaks at potentials of ?0.64 V and ?0.82 V vs. SCE. The influence of DAB concentration on the sensitivity of the method is discussed. The calibration graphs are linear over the range 0–200 μg l?1 Se(IV) and the detection limit is 0.10 μg l?1. Copper(II) and lead(II) are tolerated in 500-fold amounts; the method is applicable to the determination of selenium in NBS Oyster Tissue.  相似文献   

18.
A kinetic method is described for the determination of thyroxine (0.4–4 μg ml?1), based on its catalytic effect on the reduction of cerium(IV) by arsenic(III). The reaction is monitored potentiometrically; the time required for a 20-mV change in potential is inversely proportional to the thyroxine concentration. The method is applicable to tablets.  相似文献   

19.
Afkhami A  Safavi A  Massoumi A 《Talanta》1992,39(8):993-996
A method is presented for the determination of selenium, based on the catalytic effect of selenium(IV) on the reduction reaction of BrO(-)(3) by N(2)H(4).2HCl. The decolourization of Methyl Orange by the reaction products was used to monitor the reaction spectrophotometrically at 525 nm. This method is precise, highly sensitive, simple, rapid, widely applicable and selective for the determination of selenium(IV) and total selenium. The variables which affected the reaction rate were fully investigated and the optimum conditions were established. Selenium, as low as 1 ng/ml, can be determined by this method. The relative standard deviation of 20 ng of selenium was 0.94% (N = 10). The method was applied to the determination of Se(IV) in a health-care product.  相似文献   

20.
Liu X  Tu Y  Zhao Y  Zhu L  Liu H  Yu H  Ding Y  Ren Y 《Talanta》1992,39(3):207-209
The catalytic polarographic determination of selenium(IV) by use of the SeSO(2-)(3) -KIO(3) system is sensitive, accurate, rapid and requires only small quantities of sample. The detection limit for selenium(IV) is 0.04 ng/ml in the final solution. The working range of the calibration is 0.04-2.5 ng/ml. Se(VI) present can be reduced with hot hydrochloric acid to Se(IV), allowing determination of the total selenium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号