首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A simultaneous preconcentration procedure for the determination of Cd(II), Ni(II), Co(II) and Cu(II) by atomic absorption spectrometry is described. The method is based on solid phase extraction of the metal ions on dithizone loaded on naphthalene in a mini-column, elution with nitric acid and determination by flame atomic absorption spectrometry. The sorption conditions including NaOH concentration, sample volume and the amount of dithizone were optimized in order to attain the highest sensitivity. The calibration graph was linear in the range of 0.5–75.0 ng ml?1 for Cd(II), 1.0–150.0 ng ml?1 for Ni(II), 1.0–150.0 ng ml?1 for Co(II) and 1.0–125.0 ng ml?1 for Cu(II) in the initial solution. The limit of detection based on 3Sb was 0.13, 0.32, 0.33 and 0.43 ng ml?1 for Cd(II), Ni(II), Co(II) and Cu(II), respectively. The relative standard deviations (R.S.D) for ten replicate measurements of 20 ng ml?1of Cd(II), 100 ng ml?1 of Ni(II), Co(II) and 75 ng ml?1 of Cu(II) were 3.46, 2.43, 2.45 and 3.26%, respectively. The method was applied to the determination of Cd(II), Ni(II), Co(II) and Cu(II) in black tea, tap and river water samples.  相似文献   

2.
Y. Zhao 《Chromatographia》2000,51(3-4):231-234
Summary A new chelating reagent 2-thiophenaldehyde-4-phenyl-3-thiosemicarbazone (TAPT) has been examined for high performance liquid chromatographic (HPLC) separations of cobalt (II), copper(II) and iron (II) or cobalt (II), nickel (II), iron (II), copper (II) and mercury (II) as metal chelates on a C18, 5μm column (250×4 mm i.d.) The chelates were eluted isocratically with methanol: acetonitrile: water containing sodium acetate and tetrabutylammonium bromide (TBA), and detected at 254 nm. A solvent extraction procedure was developed for simultaneous determination of the metals with detection limits within 0.02–2.5 μ g.mL−1. The method was applied to the determination of copper, cobalt and iron in natural waters.  相似文献   

3.
O'Brien TP  O'Laughlin JW 《Talanta》1976,23(11-12):805-810
The gas Chromatographic behaviour of the ternary complexes of selected bivalent first-row transition metal ions with 1,1,1,5,5,5-hexafluoro-2,4-pentanedione H(HFA), and di-n-butylsulphoxide, DBSO, was studied. Calibration plots of peak area vs. amount of metal injected were linear over a range of 60–900 ng for manganese(II), iron(II), cobalt(II) and nickel(II). The average relative standard deviation was less than 3·0% for all the metals studied. Detection limits of 60, 109, 112 and 115ng for cobalt(II), nickel(II), iron(II) and manganese(II), respectively, were obtained with flame-ionization detection. Various liquid phases, including OV-1, SE-30, and Dexsil 300 were used. The best results were obtained on columns of 5% Dexsil 300. No appreciable thermal decomposition was observed on stainless-steel or glass columns, but the best formed peaks were obtained on all-glass columns. The elution of the metallic species was confirmed by venting the exit gases from the gas chromatograph directly into an atomic-absorption spectrophotometer.  相似文献   

4.
A luminol chemiluminescence detection/flow injection analysis technique coupled with ion chromatography (IC) has been examined for the selective determination of cobalt (II) at pg ml?1 levels. A barium chloride solution was used as an eluent in the IC to separate cobalt(II) from interferents. When a 100-μ1 sample injection volume was used, the detection limit was 1.0 pg ml?1 cobalt; the minimum detectable amount of cobalt was 100 fg. The calibration graph was linear above 10 pg ml?1 and the linear dynamic range extended over six orders of magnitude. The relative standard deviation for ten replicate measurements of 30 pg ml?1 cobalt was 3.8%. The results of the analysis of a synthetic sample corresponding to a boiling-water reactor coolant and some commercially available copper(II) standard solutions are given.  相似文献   

5.
《Analytical letters》2012,45(13-14):2813-2834
Abstract

Spectrophotometric procedure is described for the quantitative determination of diphenadione [2-(diphenylacetyl)-1,3-indandione], based on direct spectrophotometric measurements of the absorbances of its iron (III), iron (II) and cobalt (II), metal complexes at 488 nm, 505 nm and (334 nm, 372 nm), respectively. The drug reacts with metals in the ratio of 3:1 and 2:1 for iron (III) and for both iron (II) and cobalt (II) respectively. The obtained complexes have apparent molar absorptivities of 1.48 × 103 1 mol?1 cm?1, 0.714 × 103 1 mol?1cm?1 and (1.70 × 103 1 mol?1cm?1, 1.93 × 103 1 mol?1cm?1) for iron (III), iron (II) and cobalt (II) complexes, respectively. The procedure is suggested for the determination of 51–400 μg.ml?1 diphenadione via the iron (II) complex and 35–170 μg.ml?1 diphenadione via both cobalt (II) and iron (III) complexes. The suggested procedure has accuracies of 99.79 ± 0.67%, 99.64 ± 0.37% and (100.09 ± 0.53%, 99.99 ± 0.42%) for the metal complexes of iron (III), iron (II) and cobalt (II), respectively.  相似文献   

6.
Khuhawar MY  Lanjwani SN 《Talanta》1998,46(4):485-490
The complexing reagent 2-thiophenaldehyde-4-phenyl-3-thiosemicarbazone (TAPT) was examined for high performance liquid chromatographic (HPLC) separations of cobalt(II), copper(II) and iron(II) or cobalt(II), nickel(II), iron(II), copper(II) and mercury(II) as metal chelates on a Microsorb C-18, 5-mum column (150x4.6 mm i.d.) (Rainin Instruments Woburn, MA, USA). The complexes were eluted isocratically with methanol:acetonitrile:water containing sodium acetate and tetrabutyl ammonium bromide (TBA). UV detection was at 254 nm. The solvent extraction procedure was developed for simultaneous determination of the metals, with detection limits within 0.5-2.5 mug ml(-1) in the final solution. The method was applied for the determination of copper, cobalt and iron in pharmaceutical preparation.  相似文献   

7.
Three water-soluble carboxyl metalloporphyrins, cobalt (II), copper (II) and iron (III) meso-tetrakis (carboxyl) porphyrin were prepared and applied as homogeneous electrocatalysts for hydrogen evolution reaction (HER) with acetic acid, trifluoroacetic acid, p-toluene sulfonic acid and water as proton sources. Cyclic voltammetry (CV) results revealed the HER underwent different routes for these metalloporphyrins. Electrocatalysis tests in buffer solution of pH=7.0 showed the TOFs of cobalt (II), copper (II) and iron (III) meso-tetrakis (carboxyl) porphyrin were 184.78, 160.28 and 184.87 mol−1 ⋅ h−1 and the faradaic efficiency were 94.37 %, 93.01 % and 96.98 % at an overpotential of 788 mV, respectively. These results indicate the synthesized metal carboxyl porphyrins have good electrocatalytic activity for HER.  相似文献   

8.
Summary Complexes of furan and thiophene azo-oximes with iron(II), cobalt(III), nickel(II) and copper(II) have been prepared and characterised. Iron(II), cobalt(III) and copper(II) complexes are diamagnetic in the solid state. The diamagnetism of the copper(II) chelates is suggestive of antiferromagnetic interaction between two copper centres.1H n.m.r. spectral data suggest atrans-octahedral geometry for the tris-chelates of cobalt(III). Nickel(II) complexes are paramagnetic, in contrast to the diamagnetism of the analogous complexes of arylazooximes. The electronic spectra are suggestive of octahedral geometry for the iron(II), cobalt(III) and nickel(II) complexes, andD 4h -symmetry for copper(II). Infrared data indicate N-bonding of the oximino-group to the metal ions.  相似文献   

9.
A stopped-flow injection method for the determination of copper(II) in the range 0.2–300 ng ml?1 is proposed, based on the catalytic effect of this ion on the 2,2'-dipyridylketone hydrazone/hydrogen peroxide reaction. The oxidation product shows an intense blue fluorescence that is monitored at λex = 350 nm, λem = 427 nm. The sampling rate (72 h?1), r.s.d. (1.4%) and the lack of interference from most foreign ions, allowed application of the method to the determination of copper in foods and blood serum.  相似文献   

10.
A chemiluminescence (CL) flow system for determination of thyroxine (Thy) is presented. It is based on the catalytic effect of cobalt(II) on the CL reaction between luminol and hydrogen peroxide. The iodinated chemical structure of Thy causes a heavy atom effect. The luminol CL signals show significant quenching by Thy. The calibration graph for Thy is linear for 15-70 μg ml−1 and the 3σ detection limits are 27 μg ml−1 for d-Thy and 23 μg ml−1 for l-Thy.  相似文献   

11.
The cyclic voltammetric behavior of carbon paste electrodes modified by direct admixing with the products of the reactions between ethanedial (glyoxal) and 5-amino-1,10-phenanthroline at 100°C and that of their iron(II) complexes is reported. The ligand(s) produced in absence of iron(II) are able to complex iron(II) and copper(II) ions reversibly, but other ions such as nickel(II), cobalt(II), cadmium(II) and manganese(II), if complexed, show no electrochemical activity. Admixing with the products of the reaction in the presence of excess of iron(II) ion, because of high insolubility and fast electron exchange, produces surfaces useful for amperometric detection in continuous-flow systems. The voltammetric and amperometric behavior in the presence of HSO?3 ions is reported in order to illustrate this application.  相似文献   

12.
《Analytical letters》2012,45(15):2747-2756
Abstract

The application of a zero-crossing method to the simultaneous determination of copper (II) and mercury (II) with methylethylenediaminetetraacetic acid (MEDTA) is described. The procedure does not require equations to be solved, and it is suitable for concentrations of 0.008–0.036 mg ml?1 of copper and 0.025–0.300 mg ml?1 of mercury. The main interferences, both anionic and cationic, were easily eliminated. The method was applied to different aqueous matrices. It was compared with an atomic absorption spectrophotometry method (AA) and good results were obtained.  相似文献   

13.
The reagent bis(isovalerylacetone)ethylenediimine(H2IVA2en) has been examined for HPLC separation and UV determination of cobalt, copper, iron and platinum using off-line precolumn derivatization and extraction in chloroform. The complexes of cobalt(II), cobalt(III), iron(II), iron(III) and the reagent have been subsequently separated on a Microsorb C-18 column. The complexes were eluted isocratically using ternary mixtures of methanol/water/acetonitrile. Detection was achieved by UV monitoring. Detection limits for Co(II), Co(III), Fe(II) and Fe(III) were 2.5–5.0 ng/injection, based on 0.5–1.0 g/ml with 5 l/injection. The concentration of cobalt(II) and cobalt(III) in aqueous solution have been determined. The presence of oxovanadium(IV), platinum(II), and nickel(II) did not affect the determinations. The HPLC method developed has been applied to the determination of cobalt, copper, iron and platinum in pharmaceutical preparations at the 30 g/g to 15 mg/g level and the obtained results were compared to those of atomic absorption spectrometry.  相似文献   

14.
A simple and sensitive method for the determination of trace amounts of nickel(II) is described. The method is based on the adsorptive enrichment of nickel(II) as the complex with quinoxaline-2,3-dithiol using a finely divided anion-exchange resin, collection of the resin on a membrane filter by filtration, and direct measurement of the absorbance of the resultant circular thin layer by reflective spectrophotometry at 605 nm. In the presence of interfering cations such as copper(II) and cobalt(II) a sample solution is first filtered, after the addition of ammonium thiocyanate and Zephiramine, to extract these cations onto a membrane filter as the ion-pair precipitate formed between the metal-thiocyanate complex anions and Zephiramine cations, then nickel(II) in the filtrate is determined. Interferences from iron(III), silver(I), bismuth(III), cadmium(II), mercury(II), indium(III), palladium(II), platinum(IV), tin(IV), and zinc(II) can also be eliminated. The proposed method was applied to the determination of nickel in white wine. The concentrations of nickel found in 5-ml aliquots of 10 different wine samples were in the range 16.1-68.0 ng ml−1.  相似文献   

15.
In the flow system described, iron(II) is measured spectrophotometrically with 1,10-phenanthroline, and total iron is determined in the same flow line by atomic absorption spectrometry. Linear calibration ranges are 0.1–35 and 0.1–10 μg ml?1 for iron(II) and total iron, respectively.  相似文献   

16.
Iron(II) (1.0 × 10?9–1.0 × 10?6 M) is determined by the production of chemiluminescence in a luminol system in the absence of added oxidant. Iron(III) (2.0 × 10.8?8–2.0 × 10?6 M) is determined after reduction to iron(II) in a silver reductor mini-column in the flow system. Cobalt, chromium, copper and manganese interfere.  相似文献   

17.
A kinetic—spectrophotometric method for the detemination of traces of cobalt(II) and manganese(II) based on their catalytic effect on the tiron—hydrogen peroxide indicator reaction is proposed. Optimal conditions for determination of Co(II) are deduced from response surface studies, considering the sensitivity and the blank absorbance as responses. The detection limit is 0.05 ng Co ml?1. The Mn(II)-catalyzed reaction was optimized for 1,10-phenanthroline as the activator by the simplex method and for 2,2′-bipyridine as the activator by response surface methodology on the basis of a previously described mechanistic model of the catalytic reaction. In the presence of 2,2′-bipyridine, the detection limit is 0.2 ng Mn ml?1. The influence of foreign metal ions on both determinations is discussed and is related in the case of the 2,2′-bipyridine—activated Mn(II)-catalyzed reaction with model generated effects of these metal ions.  相似文献   

18.
A catalytic method is described for the determination of trace amounts of manganese(II) based on its catalytic effect on the hydrogen peroxide oxidation of an anthraquinone dye, Acid blue 45 (C.I. 63010). The reaction is followed spectrophotometrically by measuring the rate of change in absorbance of the dye at 595 nm. The calibration graph (rate constant (tg α) vs. manganese concentration) is linear in the range 4–25 ng Mn ml?1, the relative standard deviation being 1.9% at the 13 ng Mn ml?1 level. There are few interferences. The kinetic parameters of the reaction were investigated and the role of hydrogen peroxide and hydrogencarbonate ions is discussed.  相似文献   

19.
A procedure for the simultaneous determination of copper and lead by graphite-furnace atomic absorption spectrometry was investigated by means of a two-channel atomic absorption spectrometer. Both copper(II) and lead(II) are converted into their iodo complex anions and extracted quantitatively into diisobutyl ketone as their ion pairs with tetradecyldimethylbenzylammonium (zephiramine) in a 10-ml centrifuge tube. An aliquot of the organic extract is directly pipetted from the upper layer in the centrifuge tube and injected into the graphite furnace. The detection limits (S/N = 3) are 2.6 ng ml?1 of copper and 1.0 ng ml?1 of lead. The relative standard deviations for 10 replicate determinations are 2.9% for 20 ng ml?1 of copper and 2.7% for 10 ng ml?1 of lead. Results of analyses of some practical samples are given.  相似文献   

20.
Kilian K  Pyrzyńska K 《Talanta》2003,60(4):669-678
The reaction of 5,10,15,20-tetrakis(4-carboxylphenyl)porphyrin (TCPP) with Cd(II), Pb(II), Hg(II) and Zn(II) was studied spectrophotometrically and kinetics, equilibrium constants as well as photodecomposition of complexes were determined. It was verified that these metal ions with large radius accelerate the incorporation reaction of zinc into TCPP. On the basis of the mechanism and kinetics of this reaction, a sensitive method for the spectrophotometric determination of trace amounts of Zn(II) has been developed. The molar absorptivity of examined Zn-TCPP complex and Sandell's sensitivity at 423 nm were 3.5×105 M−1 cm−1 and 18.3 ng cm−2. The detection limit for the recommended procedure was 1.4×10−9 M (0.9 ng ml−1) and precision in range 20-100 ng ml−1 not exceeds 2.7% RSD. The proposed method applied for zinc determination in natural waters and nutritional supplement was compared with AAS results and declared value.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号