首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipophilicity and methylene selectivity of mixed pseudo‐stationary phases (PSPs) (containing lithium dodecyl sulphate (LDS) and lithium perfluorooctanesulphonate (LiPFOS) in different molar ratios) applied in MEKC have been investigated. Micellar proportion (tprop,mic, a quantity expressing that how much time is spent by the analyte in the micellar phase related to its whole migration time), CLOGP50 value (showing the value of hydrophobicity of a molecule spending exactly 50% of its migration time in the PSP) and methylene selectivity have been determined for different LDS/LiPFOS mixed phases. Values of the above‐mentioned parameters have been determined for analytes with different chemical structures (alkylbenzene and alkylphenone homologous series, alcohols). Good linear correlation was obtained between either the micellar proportion, CLOGP50, or methylene selectivity and the phase composition for the mixed phases. Lipophilicity and methylene selectivity of the mixed LDS/LiPFOS PSPs can be calculated and can continuously be changed by mixing the two single phases (LDS and LiPFOS) in the appropriate (and calculable) portion.  相似文献   

2.
The use of micelles in ionic liquid based gas-chromatography stationary phases was evaluated using equations derived for a "three-phase" model. This model allows the determination of all three partition coefficients involved in the system, and elucidates the micellar contribution to retention and selectivity. Four types of micellar-ionic liquid columns were examined in this study: 1-butyl-3-methylimidazolium chloride with sodium dodecylsulfate or dioctyl sulfosuccinate, and 1-butyl-3-methylimidazolium hexafluorophosphate with polyoxyethylene-100-stearyl ether or polyoxyethylene-23-lauryl ether. The partition coefficients were measured for a wide range of probe molecules capable of a variety of types and magnitudes of interactions. In general, most probe molecules preferentially partitioned to the micellar pseudophase over the bulk ionic liquid component of the stationary phase. Therefore, addition of surfactant to the stationary phase usually resulted in greater solute retention. It is also shown that the selectivity of the stationary phase is significantly altered by the presence of micelles, either by enhancing or lessening the separation. The effects of surfactant on the interaction parameters of the stationary phase are determined using the Abraham solvation parameter model. The addition of sodium dodecylsulfate and dioctyl sulfosuccinate to 1-butyl-3-methylimidazolium chloride stationary phases generally increased the phase's hydrogen bond basicity and increased the level of dispersion interaction. Polyoxyethylene-100-stearyl ether and polyoxyethylene-23-lauryl ether surfactants, however, enhanced the pi-pi/n-pi, polarizability/dipolarity, and hydrogen bond basicity interactions of 1-butyl-3-methylimidazolium hexafluorophosphate to a greater degree than the ionic surfactants with 1-butyl-3-methylimidazolium chloride. However, these nonionic surfactants appeared to hinder the ability of the stationary phase to interact with solutes via dispersion forces. Therefore, it is possible to effectively predict which analytes will be most highly retained by these micellar-ionic liquid stationary phases.  相似文献   

3.
王淼  严建伟  王颖  吕建德  傅小芸 《化学学报》2003,61(12):1980-1985
以阴离子表面活性剂十二烷基硫酸钠(SDS)、非离子表面活性剂吐温20( Tween 20)及两者组成的混合胶束体系作为毛细管胶束电动色谱(MECC)的分离介 质,进行4种结构相似的酸性化合物的MECC分离研究,考察了胶束的类型、表面活 性剂的浓度、缓冲溶液的pH值及有机改性剂乙醇对分离的影响。结果表明各因素对 酸性药物的MECC分离有不同的影响规律。SDS胶束体系对溶质的保留值最大, Tween 20体系的保留值最小,二者的分离选择性正好相反,混合胶束体系的分离行 为则介于两者之间;在SDS和Tween 20体系中,表面活性剂浓度增加,溶质的保留 时间均随之递增,混合胶束体系中,总浓度一定,随Tween 20配比的增加,溶质的 保留时间先减少后增加;缓冲溶液的pH值增大,使溶质的分离效果均能变差;有机 改性剂乙醇的加入对容量因子的影响主要与溶质的疏水性有关,并对分离作用机理 进行了探讨。在SDS和Tween 20 MECC体系下,分别进行了实样测定,取得了满意的 结果。  相似文献   

4.
Aggregational behaviour of micelles sodium dodecyl sulphate (SDS and Triton X-100, TX-100 both in pure and mixed form) and micelle like aggregates such as polymer-surfactant system [polymer poly(vinyl pyrrolidone), PVP]-SDS have been studied by using fluorescence characteristics of a newly synthesized probe. The critical micelle concentration (CMC) values determined at various surfactant compositions are lower than the ideal values indicating a synergistic effect. The value of the interaction parameter for the surfactant mixture has been determined which agrees well with the value calculated according to molecular thermodynamic theory. The total aggregation number of surfactant in mixed micelle shows a drastic variation in the SDS mole fraction range 0 < or = alpha1 < or = 0.3 and beyond the range it remains practically constant. Molar-based partition coefficients for the dye between the micellar and aqueous phase have been determined and a non-linear variation is obtained for the mixed micellar system. Variations of micro-polarity in the mixed micellar region have been investigated as a function of surfactant composition and results have been explained in terms of a suitable realistic model.  相似文献   

5.
Dobos Z  Kiss E  Hallgas B  Kéri G  Idei M 《Electrophoresis》2005,26(4-5):849-857
Micellar proportion, t(prop,mic) = t(mic)/t(m), a quantity expressing how much time is spent by the analyte in the micellar phase related to its whole migration time (t(m)) has been introduced by utilizing the micellar phase residence time (t(mic)). The t(prop,mic) values have been determined for analytes of different chemical structures (alkyl benzene and alkyl phenone homologous series, alcohols, strongly hydrophobic peptides) studied by micellar elektrokinetic chromatography (MEKC) using various cationic and anionic pseudostationary phases. A good linear correlation was obtained between t(prop,mic) and the calculated hydrophobicity (CLOGP) of the analytes for all pseudostationary phases (CLOGP = A.logt(prop,mic) + B). Considering a given pseudostationary phase, t(prop,mic) as a relative quantity is a suitable parameter to characterize and compare experimentally the behavior of the various analytes in MEKC. Applying a set of probe molecules with known hydrophobicity, the CLOGP(50) value (showing the value of hydrophobicity of a virtual molecule spending exactly 50% of its migration time in the pseudostationary phase) has been calculated for each pseudostationary phase applied here. This experimentally determinable numerical value (characterizing the pseudostationary phase) can be utilized to compare the hydrophobicity and hence retention ability of the pseudostationary phases. The t(prop,mic) value was found to be applicable to compare the methylene selectivity of the different pseudostationary phases as well: logt(prop,mic) = A.Z + B, where Z is the number of carbon atoms of the alkyl chain in the alkyl benzene homologous series.  相似文献   

6.
Solid phase microextraction coupled to gas chromatography has been used to study the partitioning behaviour of several analytes to four monocationic and two dicationic imidazolium-based ionic liquid (IL) aggregates. The 14 different analytes studied consisted of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons, phenols, and esters. The obtained partition coefficients for analytes that exhibited partitioning into the IL-aggregates ranged from 30 to 5200. Hydrophobic analytes (with octanol-water partition coefficients higher than 300) appear to be preferably extracted over more polar analytes revealing the possibility of carrying out selective extractions using these aggregate systems. Monocationic IL-aggregates generally exhibited higher partition coefficients compared to analogous dicationic ILs. The micellar shape of the IL-aggregates also influences the extent of analyte partitioning.  相似文献   

7.
The keto-enol equilibria of benzoylacetone (BZA) as a model for 1,3-dicarbonyl compounds are studied in aqueous acid and cationic micellar solution. Evolving factor analysis (EFA), multivariate curve resolution-alternating least-squares (MCR-ALS), and rank annihilation factor analysis (RAFA) are used for complete resolving of measured spectrophotometric data. The acidity constants of the enolic, KaE, and ketonic, KaK, forms of BZA and also the tautomerization constant, Kt, and its related thermodynamic parameters have been determined by using EFA and MCR-ALS methods and spectral variation of BZA solutions in various pHs and temperatures. The concentration and spectral profiles of all species were calculated without any assumption about chemical models. The spectral variation of BZA solutions as a function of cationic micelle concentration sufficiently beyond its critical micelle concentration is analyzed according to the partition model for distribution between water and micellar pseudo-phase and RAFA. The outputs of using RAFA on measured rank deficient data are the spectrum of enolic form in the micellar pseudo-phase, free from contribution of the enolic form in the aqueous phase, the partition coefficient of enolic form, KdE, between the micelle and water phases, and the tautomerization constant in the micellar pseudo-phase, Ktm.  相似文献   

8.
Téllez A  Weiss VU  Kenndler E 《Electrophoresis》2008,29(18):3916-3923
Three equilibria determine the interaction of a neutral analyte with the detergent in micellar electrokinetic chromatography and therefore its migration: (i) that of the free analyte in the aqueous phase with the micelle, (ii) its association with free detergent monomers in the aqueous phase, and (iii) the partition of the associate of analyte and monomer between the aqueous solution and the micelle. For the first equilibrium, non-stoichiometric partitioning between two phases is preferred in the present work over the assumption of complex formation between one molecule of the analyte with one micelle. The second equilibrium is described by the formation of a 1:1 associate of the analyte and monomer. In this paper, thirdly an additional equilibrium is introduced, namely, the distribution of the analyte-monomer associate between the aqueous and the micelle phase; it is expressed by the according partition coefficient. The three equilibrium constants are interrelated. Mobility data for a lipophilic fluorescent compound and a series of n-alkylphenones (differing in chain length) were measured as a function of the SDS concentration below and above the critical micellar concentration. Curve fitting enabled the derivation of the equilibrium constants. It was found that the association constants of the analytes with the detergent monomers are between 2 and 75 M(-1). Interestingly, the partition coefficient of the analyte-monomer associate between the aqueous and micellar phase is by a factor of 5-200 larger than that of the free analyte.  相似文献   

9.
The lateral-flow (immuno)assay (LFA) has been widely investigated for the detection of molecular, macromolecular, and particle targets at the point-of-need due to its ease of use, rapid processing, and minimal power and laboratory equipment requirements. However, for some analytes, such as certain proteins, the detection limit of LFA is inferior to lab-based assays, such as the enzyme-linked immunosorbent assay, and needs to be improved. One solution for improving the detection limit of LFA is to concentrate the target protein in a solution prior to the detection step. In this study, a novel approach was used in the context of an aqueous two-phase micellar system comprised of the nonionic surfactant Triton X-114 to concentrate a model protein, namely transferrin, prior to LFA. Proteins have been shown to partition, or distribute, fairly evenly between the two phases of an aqueous two-phase system, which in turn results in their limited concentration in one of the two phases. Therefore, larger colloidal gold particles decorated with antibodies for transferrin were used in the concentration step to bind to transferrin and aid its partitioning into the top, micelle-poor phase. By manipulating the volume ratio of the two coexisting micellar phases and combining the concentration step with LFA, the transferrin detection limit of LFA was improved by tenfold from 0.5 to 0.05?μg/mL in a predictive manner. In addition to enhancing the sensitivity of LFA, this universal concentration method could also be used to improve other detection assays.  相似文献   

10.
11.
A versatile method for measuring the partition coefficients of volatile analytes with an aqueous pseudophase using headspace gas chromatography is reported. A “three-phase” model accounts for all equilibria present in the system, including the partitioning of the analyte in the gas and aqueous phases to the pseudophase. This method is applicable to a wide variety of volatile analytes and aqueous pseudophases, providing that sufficient pseudophase may be used to reduce the analyte partial pressure. Generally, the method offers good reproducibility and high sensitivity. The associations of five volatile analytes (hydrogen sulfide, methanethiol, dimethyl sulfide, dichloromethane, and ethyl ether) with various cyclodextrins were examined. All analytes were found to partition preferentially to the cyclodextrin pseudophase compared to the aqueous phase. In addition, several analyte–cyclodextrin combinations formed insoluble complexes in solution that enhanced the extraction of the analyte from the gas and aqueous phases. Derivatization of the cyclodextrins generally decreased the extent of analyte–cyclodextrin interaction.  相似文献   

12.
The partitioning behavior of four newly synthesized chalcones between aqueous and micellar phases of ionic surfactants (SDS and CTAB) was investigated using ultraviolet-visible spectroscopy. The simple absorption spectra were recorded to study the interaction between these drugs and surfactants (in the concentration range below critical micelle concentration to above critical micelle concentration). The absorption data is also used to determine the number of additive molecules incorporated per micelle of the surfactant. The partition coefficient (Kx) of additives between bulk water phase and the micellar phase was determined in the range of 5.52 × 10+4 to 5.06 × 10+5 at 298 K by differential spectroscopic method. The corresponding standard free energy of partition ΔG°p obtained was in the range of ?27.05 kJmol?1 to ?32.54 kJmol?1. The relative solubility of additives between aqueous and micellar phases in different micellar concentrations was also estimated. The results showed that the chalcones are preferably soluble in cationic surfactant micelles.  相似文献   

13.
T. Takeuchi  T. Miwa 《Chromatographia》1996,43(3-4):143-148
Summary The retention behavior of dansyl amino acids in micellar liquid chromatography has been examined by using ionexchange-induced stationary phases. Several parameters affected the retention of the analytes, including the type and concentration of micellar agent and modifier ion and the concentration of acetonitrile in the mobile phase. The order of elution of dansyl amino acids obtained with the micellar mobile phase was very different from that observed in conventional reversed-phase liquid chromatography. Fluorescence intensities of some dansyl amino acids were enhanced by the micellar mobile phase.  相似文献   

14.
Immobilized enzyme reactors are used as post-column reactors to modify the detectability of analytes. An immobilized amino acid oxidase reactor was prepared and coupled to an immobilized peroxidase reactor to detect low level of amino acids by fluorescence of the homovanilic dimer produced. A cholesterol oxidase reactor was prepared to detect cholesterol and metabolites by 241 nm UV absorbance of the enone produced. The preparation of the porous glass beads with the immobilized enzymes is described. Micellar liquid chromatography is used with non-ionic micellar phases to separate the amino acids or cholesterol derivatives. It is demonstrated that the non ionic Brij 35 micellar phases are very gentle for the enzyme activity allowing the reactor activity to remain at a higher level and for a much longer time than with hydro-organic classical chromatographic mobile phases or aqueous buffers. The coupling of nonionic micellar phases with enzymatic detection gave limits of detection of 32 pmol (4.8 ng injected) of methionine and 50 pmol (19 ng injected) of 20alpha-hydroxy cholesterol. The immobilized enzyme reactors could be used continuously for a week without losing their activity. It is shown that the low efficiency obtained with micellar liquid chromatography is compensated by the possibility offered by the technique to easily adjust selectivity.  相似文献   

15.
We used fluorescence quenching, vibronic band ratios and excimer fluorescence techniques to quantify the statistics of pyrene solubilization in nonionic octaethylene glycol monododecyl ether (C12E8) micelles. Using a two-phase model (aqueous and micellar pseudophases) to interpret fluorescence results, we found that all three of these experimental methods provide consistent information about pyrene partitioning between aqueous and micellar pseudophases. From dynamic quenching experiments we determined the pyrene partition coefficient and the average number of pyrene molecules solubilized per micelle over a range of surfactant concentrations. The pyrene partition coefficient increases with increasing surfactant concentration. We confirmed the partitioning results by excimer fluorescence measurements. Quenching results indicate that pyrene is accessible to Cu2+ quenchers even in the limit of high surfactant concentration where solubilized pyrene is in the infinite dilution limit in the micellar pseudophase. This suggests that solubilized pyrene resides in the micellar palisade layer. We determined the maximum number of pyrene solubilizates allowed per micelle (micellar solubilization capacity) by applying a three-phase model to fluorescence experiments conducted in the presence of solid phase pyrene. The estimated maximum capacity is 6 pyrene molecules per micelle. The three phase partitioning model successfully predicted the excimer fluorescence in the presence of solid pyrene.  相似文献   

16.
This paper is devoted to application of ionic liquids as surfactants in LC of organic compounds, derivatives of 1,4‐thiosemicarbazides. According to HPLC requirements the most advantageous conditions such as transparency for ultraviolet light, low CMC, additional inorganic salt additives, and appropriate organic solvent were established. The CMC was determined using conductivity measurements. Suitability of two different stationary phases: RP‐C18 and cyanopropyl bonded phase was examined under micellar conditions. Chosen ionic liquid surfactant was compared to common traditional amphiphilic reagent – SDS. Elaborated on chromatographic micellar conditions were tested as a pilot technique for prediction of distribution coefficients of organic analytes in ionic liquid‐based aqueous two‐phase system.  相似文献   

17.
Conductivity and static fluorescence measurements have been carried out at 25 degrees C to study the monomeric and micellar phases of aqueous solutions of mixed micelles constituted by a conventional cationic surfactant, dodecyltrimethylammonium bromide (D(12)TAB), and a tricyclic antidepressant drug, amitriptyline hydrochloride (AMYTP), with aggregation properties. From conductivity data, the total mixed critical micelle concentration and the dissociation degree of the mixed micelle have been obtained, while fluorescence experiments allow for the determination of the total aggregation number, and the micropolarity of micellar inside. Furthermore, the partial contribution of each surfactant to the mixed micellization process, through their critical micelle concentrations and their aggregation numbers have been determined, as well. The solubilization of the drug in the mixed micelles has been also studied through the mass action model, by determining the association constant between the micelles and the drug. From these results, the use of the micelles studied in this work as potential models for vectors of antidepressant drugs of the amitriptyline family has been discussed. The theoretical aspects of the mixed micellization process have been also analyzed.  相似文献   

18.
A mixed micellar liquid chromatography (MLC) method, the mobile phase consisting of anionic surfactant SDS and nonionic surfactant Brij35, was firstly developed for the separation and determination of six structure-like matrine-type alkaloids, including matrine, oxymatrine, sophocarpine, oxysophocarpine, sophoridine, and oxysophoridine. The factors influencing the resolution of the six alkaloids were systematically investigated and optimized, including the micellar composition and concentration, column temperature, the type and amount of organic solvent, and the pH values in the mobile phases. Under the optimized separation conditions, the six matrine-type alkaloids could be easily isocratically eluted with a baseline separation within 22 min. Under the designated conditions (SDS concentration from 10 to 50 mM, Brij35 from 5 to 30 mM, pH 3 and 5% 1-propanol), the hydrophobic selectivity was negatively correlated with the concentration of Brij35 but not with SDS. The functional group selectivity of the carbonyl group, double bond, and diastereomers, all decreased with the increase in percentage of SDS in the mixed micellar phase, because the strong electrostatic force masks other molecular forces which can discriminate the retention of the analytes. Therefore, such a combination in surfactants of MLC is a powerful strategy to increase the selectivity by adjusting the balance among the various molecular interaction forces influencing analytes' retention. Finally, the developed method was successfully used to separate and determine the contents of main alkaloids in Sophora medicinal plants, S. flavescens Ait. In summary, the mixed MLC is a valuable approach to separate and determine the structure-like multi-component natural samples.  相似文献   

19.
A new electrokinetic chromatographic method was applied to the determination of the partition coefficient between water and micelle for a group of cephalosporins (cefmetazol, cephradin, cefaclor, ceftazidim, cefodizim, cephapirin, cephalothin and ceftriaxon) using sodium dodecyl sulphate as an anionic surfactant in microemulsion and in micellar systems. In the new method, the running buffer contains both the micelles and the drug, and the injected solution contains the same concentration of micelles as the running buffer but not the drug. The mobility of the drug can be measured from a negative peak recorded the chromatogram. The required parameters for the determination of the capacity factor (mu(aq) and /mu(me) are the electrophoretic mobilities of the solutes in the aqueous and the micelle phases, mu(eff) is the effective mobility in the micellar system or in the microemulsion) were measured by the new micellar and microemulsion electrokinetic chromatography technique. Linear log-log relationships were found between both the micelle-water partition coefficient and the capacity factor and the n-octanol-water partition coefficient.  相似文献   

20.
The separation and selectivity of eight aromatic compounds ranging from hydrophilic to hydrophobic properties in micellar electrokinetic chromatography (MEKC) using sodium dodecyl sulfate (SDS) micelles or Tween 20-modified mixed micelles were investigated. The effect of different operation conditions such as SDS and Tween 20 modifier surfactant concentration, buffer pH, and applied voltage was studied. The resolution and selectivity of analytes could be markedly affected by changing the SDS micelle concentration or Tween 20 content in the mixed micelles. Applied voltage and pH of running buffers were used mainly to shorten the separation time. Complete separation of eight analytes could be achieved with an appropriate choice of the concentration of SDS micelles or Tween 20-modified mixed micelles. Quicker elution and better precision could be obtained with SDS-Tween 20 mixed micelles than with SDS micelles. The mechanisms that migration order of those analytes was mainly based on their structures and solute-micelle interactions, including hydrophobic, electrostatic, and hydrogen bonding interactions, were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号