首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An electroanalytical study of the oxidation processes of umbelliferone and hymecromone at a glassy carbon electrode in micellar solution and emulsified medium by different voltammetric techniques is described. The non-ionic surfactant Triton X-405 in acetate-buffered medium at pH 4.8 was found to be the most suitable. Different ranges of linearity were obtained in the micellar solutions, depending on the technique used; the limits of determination for differential pulse voltammetry (DPV) at a stationary electrode were 2.9×10?6 mol l?1 and 3.3×10?6 mol l?1 for umbelliferone and hymecromone, respectively. In the emulsified medium formed with a mixture of toluene and ethyl acetate (3:2), the oxidation processes yielded similar results. With DPV, linear calibration plots were obtained in the ranges 1.0×10?5–9.0×10?7 mol l?1 umbelliferone and 1.0×10?5–2.0×10?6 mol l?1 hymecromone. The media used are predominantly aqueous so that special reference electrodes and solvent purification are not needed.  相似文献   

2.
《Analytical letters》2012,45(4):674-686
The electrochemical reduction behavior of 1,3,5-triazine herbicides, Atraton (AN), Prometon (PN), Secbumeton (SN), and Terbumeton (TN) at mercury electrodes was studied in aqueous Britton Robinson buffer (BR) solutions by using different voltammetric techniques. The nature of the electrode process was examined. Number of electrons involved in the reduction process of all the four compounds was evaluated and a reduction mechanism was proposed. The electrolysis products were separated and identified by IR spectra. For analytical purposes, BR buffer of pH 4.0 was chosen as working medium for all the four analytes. The detection limits were found to be 1.5 × 10?8 mol l?1, 2 × 10?8 mol l?1, 2.8 × 10?8 mol l?1, and 1 × 10?8 mol l?1 for AN, PN, SN, and TN, respectively. A differential pulse voltammetric method was developed for the determination of these compounds in agricultural formulations, water, and soil samples. The interference from the ions and other herbicides were also evaluated.  相似文献   

3.
In an ammonium buffer medium at pH 8.9–9.5, hemin exhibits mimetic peroxidase activity, and has a catalytic effect on the oxidative decoloration of bromopyrogallol red (BPR) with hydrogen peroxide. On this basis and in presence of ethanol as an effect-enhancing agent, a spectrophotometric determination of hydrogen peroxide is described with an apparent molar absorptivity of 4.00×104?l?mol?1?cm?1 and a linear range from 3.2×10?7 to 3.2×10?5?mol?l?1. BPR has advantages over some of widely used chromogenic substrates in aspects of sensitivity, simplicity and detection wavelength, while hemin has better stability than peroxidase. The system can be easily coupled with a glucose oxidase-catalyzed reaction, and glucose in the concentration range of 6.0×10?7? 3.2×10?5?mol?l?1 is spectrophotometrically determined. The method has been applied to the analyses of synthetic water and human serum samples. The Michaelis parameters and the mechanism of the mimetic peroxidase reaction are also investigated.  相似文献   

4.
《Analytical letters》2012,45(1):90-103
Abstract

A sensitive and reliable stripping voltammetric method was developed to determine Spironolactone drug. This method is based on the adsorptive accumulation of the drug at a hanging mercury drop electrode and then a negative sweep was initiated, which yield a well defined cathodic peak at ?1000 mV versus Ag/AgCl reference electrode. To achieve high sensitivity, various experimental and instrumental variables were investigated such as supporting electrolyte, pH, accumulation time and potential, drug concentration, scan rate, frequency, pulse amplitude, convection rate and working electrode area. The monitored adsorptive current was directly proportional to the concentration of Spironolactone and it shows a linear response in the range from 1×10?8 to 2.5×10?7 mol l?1 (correlation coefficient=0.999) and the detection limit (S/N=3) is 1.72×10?10 mol l?1 at an accumulation time of 90 sec. The developed AdSV procedure shows a good reproducibility, the relative standard deviation RSD% (n=8) at a concentration level of 1.5×10?7 mol l?1 was 1.4%, whereas the method accuracy was indicated via the mean recovery of 97.5%±2.04. Possible interferences by several substances usually present in the pharmaceutical formulations have been also evaluated. The applicability of this approach was illustrated by the determination of Spironolactone in pharmaceutical preparation and biological fluids such as serum and urine.  相似文献   

5.
The silver nanoparticles doped poly-glycine composite membrane was prepared by cyclic voltammetry on the surface of the glassy carbon electrode (GCE). The morphology and electrochemical properties were characterized by scanning electron microscopy and cyclic voltammetry, respectively, and in detail, the electrochemical behaviors of the norepinephrine (NE) on this membrane were studied. The results showed that the membrane had good catalytic properties for the oxidative–reductive reaction of NE. NE had a couple of sensitive oxidative-reductive current peaks. The reductive peak currents were linearly with its concentration in the range of 1.90?×?10?7 to 7.00?×?10?6 and 7.00?×?10?6 to 1.00?×?10?4?mol l?1, and the linear regressive equations were i pc (A)?=?3.73?×?10?6?+?0.70C (mol l?1), i pc (A)?=?9.83?×?10?5?+?0.12C (mol l?1), respectively, with the relate coefficient (r) of 0.9926 and 0.9944. The detection limit was 1.2?×?10?7?mol l?1 (S/N?=?3), which could be used to determine the content of NE and at the same time, eliminate the interference of the ascorbic acid (AA). The proposed method had high sensitivity, good selectivity and stability.  相似文献   

6.
The voltammetric behavior of 3‐nitrofluoranthene and 3‐aminofluoranthene was investigated in mixed methanol‐water solutions by differential pulse voltammetry (DPV) at boron doped diamond thin‐film electrode (BDDE). Optimum conditions have been found for determination of 3‐nitrofluoranthene in the concentration range of 2×10?8–1×10?6 mol L?1, and for determination 3‐aminofluorathnene in the concentration range of 2×10?7–1×10?5 mol L?1, respectively. Limits of determination were 3×10?8 mol L?1 (3‐nitrofluoranthene) and 2×10?7 mol L?1 (3‐aminofluoranthene).  相似文献   

7.
The behaviour of the vanadium(V) complex with 5-Br-PADAP at a mercury electrode was investigated in HOAcNaOAc. The adsorption phenomena were observed by linear-sweep voltammetry. The mechanism of the electrode reaction was found to be the irreversible reduction of the V(V) in the complex adsorbed on the surface of the electrode to the V(IV) complex with 5-Br-PADAP. In 0.02 mol l?1 HOAc-0.012 mol l?1 NaOAc (pH 4.5) and 1 × 10?6 mol l?1 5-Br-PADAP, the detection limits of linear-sweep adsorption voltammetry and 1.5th-order derivative adsorption voltammetry are 5 × 10?10 and 2.5 × 10?11 mol l?1 , respectively. The method was applied to samples of ore (Geological Deposit).  相似文献   

8.
Chromium(II) and vanadium(II) in acidic medium are applied as powerful reducing agents in flow injection analysis. Detection is done amperometrically. For the determination of nitrite with chromium(II), the limit of determination is 5 × 10?6 mol l?1 with a linear range up to 7.5 × 10?5 mol l?1, similar to the case of uranium(III). Vanadium(II) is less suitable for the determination of nitrite. Nitrate, hydroxylamine and hydrazine could not be determined with these reagents.  相似文献   

9.
A poly(L-methionine) modified electrode, fabricated by electrochemical immobilization of the L-methionine on a glassy carbon electrode, was used for simultaneous determination of dopamine and epinephrine through cyclic voltammetry. The electrochemical properties of dopamine and epinephrine have been investigated. This sensor gave two separated cathodic peaks at −0.282 and 0.112 V for EP and DA, respectively. A linear response was obtained in the range of 5.0 × 10−7 to 1.0 × 10−4 mol l−1 for epinephrine, and 1.0 × 10−6 to 5.0 × 10−4 mol l−1 for dopamine. The detection limits were 3.6 × 10−7 mol l−1 and 4.2 × 10−7 mol l−1 for epinephrine and dopamine, respectively. This method was successfully applied for simultaneous determination of dopamine and epinephrine in human urines. The text was submitted by the authors in English.  相似文献   

10.
《Analytical letters》2012,45(17):3195-3207
Abstract

The use of square‐wave voltammetry in conjunction with a cathodically pretreated boron‐doped diamond electrode for the analytical determination of aspartame in dietary products is described. In this determination, the samples were analyzed without previous treatment in a 0.5 mol l?1 H2SO4 solution. A single oxidation peak at a potential of 1.6 V vs. Ag/AgCl (3.0 mol l?1 KCl) with the characteristics of an irreversible reaction was obtained. The analytical curve was linear in the aspartame concentration range 9.9×10?6 to 5.2×10?5 mol l?1 with a detection limit of 2.3×10?7 mol l?1. The relative standard deviation (n=5) obtained was smaller than 0.2% for the 1.0×10?4 mol l?1 aspartame solution. The proposed method was applied with success to the determination of aspartame in several dietary products and the results were similar to those obtained using an HPLC method at 95% confidence level.  相似文献   

11.
《Analytical letters》2012,45(12):2317-2328
Abstract

Rapid, simple, and accurate spectrophotometric method is presented for the determination of ibuprofen by batch and flow injection analysis methods. The method is based on ibuprofen competitive complexation reaction with phenolphthalein‐β‐cyclodextrin (PHP‐β‐CD) inclusion complex. The increase in the absorbance of the solution at 554 nm by the addition of ibuprofen was measured. Ibuprofen can be determined in the range 8.0×10?6 ?3.2×10?4 and 2.0×10?5?5.0×10?3 mol l?1 by batch and flow methods, respectively. The limit of detection and limit of quantification were 6.19×10?6 and 2.06×10?5 mol l?1 for batch and 1.77×10?5 and 5.92×10?5 mol l?1 for flow method, respectively. The sampling rate in flow injection analysis method was 120±5 samples h?1. The method was applied to the determination of pharmaceutical formulations.  相似文献   

12.
An efficient voltammetric method was developed for the determination of maleic acid at a silver amalgam paste electrode (AgA‐PE) in Britton–Robinson buffer pH 2.0. The experimental parameters, such as pH of Britton–Robinson buffer, type of the supporting electrolyte and activation of the electrode surface were optimized. Under the optimal conditions, a linear response was observed over the 2×10?6–1×10?4 mol L?1 maleic acid concentration range, determination limit being 5×10?7 mol L?1. A highly stable response, with a relative standard deviation (RSD) of 1.6% for 45 repetitive measurements of 1×10?4 mol L?1 maleic acid showed that there was no apparent surface passivation indicating the suitability of the method. The method was successfully applied for direct determination of maleic acid in drinking and river water.  相似文献   

13.
A novel flow injection chemiluminescence (FI‐CL) method for the determination of genistein was described. The method was based on the reaction between genistein and potassium ferricyanide in alkaline solution to give weak CL signal, which was dramatically enhanced by rhodamine 6G (Rh G). The CL emission allowed quantitation of genistein concentration in the range 1.0 × 10?7–4.0 × 10?5 mol/L with a detection limit (3σ) of 4.2 × 10?8 mol/L. The relative standard deviation for 11 parallel measurements of 5.0 × 10?7 mol/L, 4.0 × 10?6 mol/L and 1.0 × 10?5 mol/L genistein were 2.59%, 2.40% and 1.48%, respectively. The experimental conditions for the CL reaction were optimized and the possible reaction mechanism was discussed. The method was applied to the determination of genistein in biological fluids.  相似文献   

14.
This paper describes the development of a new sensor based on an ionic organic film. The amphiphilic molecule, 4‐[(4‐decyloxyphenyl)‐ethynyl]‐1‐methylpyridinium iodide (10PyI), which has liquid‐crystalline properties, was synthesized and applied in the construction of a GCE/10PyI sensor. Analytical parameters for caffeic acid, repeatability (4.8 %), reproducibility (2.8 %), linearity (two ranges: 9.9×10?7 to 3.8×10?5 mol L?1 and 4.7×10?5 to 9.9×10?5 mol L?1) and detection limits (9.0×10?7 mol L?1 and 8.7×10?6 mol L?1), were determined. The method was successfully applied in the determination of total phenolic compounds (TPC) in mate herb extracts.  相似文献   

15.
《Analytical letters》2012,45(13):2175-2187
Abstract

Benzoyl peroxide (BP) was determined by differential pulse voltammetry (DPV) using a glassy carbon electrode in a dichloromethane‐acetic acid (1.5×10?2 mol l?1) solution and tetrabutyl ammonium perchlorate (0.01 mol l?1) as the supporting electrolyte. The peak potential was ?0.045 V (vs. Ag/AgCl). There was a good linear relationship between the peak current and the benzoyl peroxide concentration in the range of 2.5×10?6–1.0×10?4 mol l?1. The detection limit of the method was 2.5×10?7 mol l?1. The recovery was 94.8–106.0%. The samples of wheat flour and the pharmaceutical preparations for the treatment of acne vulgaris were directly detected with desired results. The reaction mechanism of benzoyl peroxide on the electrode was also discussed, which was two electrons and two protons irreversible reaction.  相似文献   

16.
《Analytical letters》2012,45(6):1046-1054
The determination of sildenafil citrate using differential pulse voltammetry and a cathodically pre-treated boron-doped diamond electrode is described. The obtained analytical curve is linear in the sildenafil concentration range 7.3 × 10?7 ? 7.3 × 10?6 mol L?1 in a 0.1 mol L?1 H2SO4, with a detection limit of 6.4 × 10?7 mol L?1. The proposed method, which is fast and simple to carry out, was successfully applied in the determination of sildenafil citrate in Viagra® pharmaceutical formulations, with results in close agreement (at 95% confidence level) with those obtained using a comparative HPLC method.  相似文献   

17.
A simple, rapid and accurate method for the spectrophotometric determination of chloride in non-polar media is described. The method is based on the well-known reaction of mercury(II) thiocyanate with chloride to release thiocyanate, which then reacts with iron(III). The optimum concentrations of reagents for the determination of chloride in 2,2,4-trimethylpentane (iso-octane) and cyclohexane are reported. The molar absorptivity of the complex at 505 nm is 5120 ± 200 dm3 mol?1 cm?1 for iso-octane and 5340 ± 340 dm3 mol?1 cm?1 for cyclohexane. Beer's Law is obeyed in the range 2 × 10?7–2 × 10?5 mol dm?3 (0.01–1 mg l?1) chloride.  相似文献   

18.
Electrochemical properties of proguanil were investigated by a voltammetric method (SWV) using a renewable silver amalgam film electrode. The influence of buffer pH as well as potential amplitude, frequency, and step potential was studied. The repeatability, precision and recovery of the developed method were examined. The reduction peak current was used for proguanil voltammetric determination in the range 1×10?7–6×10?6 mol L?1, LOD=2.9×10?8 mol L?1, LOQ=9.7×10?8 mol L?1. The standard addition method was used to determine proguanil in a commercial formulation (Malarone) and in spiked urine.  相似文献   

19.
A new method using differential pulse adsorptive stripping voltammetry for the determination of atrazine (ATZ) in natural water samples using a bismuth film electrode (BiFE) is proposed. The calibration curve was linear in the atrazine concentration range from 6.7×10?7 to 2.0×10?5 mol L?1, with a limit of detection (LOD) of 1.4×10?7 mol L?1. The proposed electrode was applied for atrazine determination with satisfactory results compared with a high‐performance liquid chromatography method (HPLC).  相似文献   

20.
In this paper, gold microelectrode array (Au‐MEA) were employed to determination of ethambutol in aqueous medium. Au‐MEA was constructed with an electronic microchip integrated circuit. The standard curve (analytical curve) was constructed for a single microelectrode (ME) in a concentration range of 5.0×10?5 to 2.0×10?3 mol L?1, allowing estimation of both the limit of detection (LOD) (4.73×10?5 mol L?1) and the limit of quantification (LOQ) (1.57×10?4 mol L?1) for ethambutol. When the MEA was utilized, the LOD and LOQ were 1.55×10?7 and 5.18×10?7 mol L?1, respectively. Our results indicated that Au‐MEA can be utilized as amperometric sensors for ethambutol determination in aqueous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号