首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Traces of hydrogen peroxide (8.5 × 10?8–2.5 × 10?6 mol/l) and, indirectly, glucose (3–44 × 10?6 mol/l) can be determined by the fluorescence reaction between homovanillic acid and hydrogen peroxide. Mn-TPPS4 is found to have very similar catalytic properties to horse peroxidase.  相似文献   

2.
《Analytical letters》2012,45(14):2883-2899
ABSTRACT|The catalytic activity of various mimetic enzymes instead of the peroxidase have been investigated by 4-aminoantipyrine (4-AAP) and 2, 3, 4-trichlorophenol (TCP) to form a dye utilizing hydrogen peroxide as hydrogen acceptor. The different Chlorophenolic derivatives, which act as a substrate in β-CD-hemin-H2O2-4-AAP catalytic reaction, have been systematically studied.|Meanwhile, the relationship of structure-effect for the β-CD-hemin as catalyst, and chlorphenols as substrate has been respectively discussed. The mechanism of catalytic reaction has been investigated. The results showed that β-CD-hemin was the best mimetic enzyme for peroxidase among those tested and TCP was a good substrate for the determination of hydrogen peroxide with β-CD-hemin. The method for the determination of hydrogen peroxide was proposed using 4-AAP-TCP system with β-CD-hemin as catalyst. A linear calibration graph was obtained over the H2O2 concentration of 4.8×10-?8-7.7×10-?5M, and the relative standard deviation at a H2O2 concentration of 2.8×10-?5M was 2.5%. The apparent molar absorptivity of the chromogenic reaction for H2O2 was 1.54× 104 L.mol-?1.cm?1. Satisfactory results were obtained in the determination of H2O2 in synthetic samples by this method.

Also, the method was coupled with the glucose oxidation reaction to determination glucose in human serum.  相似文献   

3.
Silver (Ag) nanoparticles were directly electrodeposited on multi-walled carbon nanotubes (MWCNT) in AgNO3/LiNO3 containing EDTA (ethylenediaminetetraacetic acid). The structure and nature of the resulting Ag/MWNT composite were characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD), and the distribution shape of Ag nanoparticles was found to be dependent on the presence of EDTA. The modified electrode showed excellent electrocatalytic activity to redox reaction of hydrogen peroxide and the mechanism of hydrogen peroxide was partly reversible procession with oxidation and reduction peaks at 0.77 and -0.83 V, respectively. The oxidation and reduction peak currents were linearly related to hydrogen peroxide concentration in the range of 1×10^-6-3×10^-4 and 1 ×10^-8-7× 10^-4 mol·L^-1 with correlation coefficients of 0.996 and 0.986, and 3s-detection limit of 9 × 10^-7 and 7 × 10^-9 mol·L^-1.  相似文献   

4.
In an ammonium buffer medium at pH 8.9–9.5, hemin exhibits mimetic peroxidase activity, and has a catalytic effect on the oxidative decoloration of bromopyrogallol red (BPR) with hydrogen peroxide. On this basis and in presence of ethanol as an effect-enhancing agent, a spectrophotometric determination of hydrogen peroxide is described with an apparent molar absorptivity of 4.00×104?l?mol?1?cm?1 and a linear range from 3.2×10?7 to 3.2×10?5?mol?l?1. BPR has advantages over some of widely used chromogenic substrates in aspects of sensitivity, simplicity and detection wavelength, while hemin has better stability than peroxidase. The system can be easily coupled with a glucose oxidase-catalyzed reaction, and glucose in the concentration range of 6.0×10?7? 3.2×10?5?mol?l?1 is spectrophotometrically determined. The method has been applied to the analyses of synthetic water and human serum samples. The Michaelis parameters and the mechanism of the mimetic peroxidase reaction are also investigated.  相似文献   

5.
《Analytical letters》2012,45(9):2025-2038
Abstract

A simple and highly sensitive method to quantify the rates of production of phenoxyl radicals in enzyme reaction is described. This method employs the peroxidase‐catalyzed reaction between chlorophenols and hydroperoxide to generate phenoxyl free radicals, which can enhance dimerization of L‐tyrosine. The product, dityrosine, was monitored fluorometrically at the excitation/emission wavelength of 320/410 nm and the initial rate of accelerated‐accumulation of dityrosine represents the formation rate of phenoxyl free radicals. With this method, the phenoxyl radicals generated in oxidation of chlorophenols with hydrogen peroxide, catalyzed by horseradish peroxidase, were investigated. Phenoxyl radicals generated from as low as 5.0×10?9 M 2,4‐dichlorophenol, for example, can be readily detected with a relative standard deviation of 2.6% for 9 replicated determination. The detection limits of phenoxyl radicals produced by various chlorophenols are 4.2×10?9, 1.1×10?9, 1.0×10?10, 2.8×10?8, and 1.1×10?7 M for 2‐chlorophenol, 4‐chlorophenol, 2,4‐dichlorophenol, 2,4,6‐trichlorophenol, and 2,3,4,6‐tetrachlorophenol, respectively. The possible pathway of the reaction is proposed. The protocol is suitable for quantification of free radicals in enzyme reaction and shows promise in being applied to biological systems.  相似文献   

6.
A biosensor for hydrogen peroxide was constructed by immobilizing horseradish peroxidase on chitosan-wrapped NiFe2O4 nanoparticles on a glassy carbon electrode (GCE). The electron mediator carboxyferrocene was also immobilized on the surface of the GCE. UV?Cvis spectra, Fourier transform IR spectra, scanning electron microscopy, and electrochemical impedance spectra were acquired to characterize the biosensor. The experimental conditions were studied and optimized. The biosensor responds linearly to H2O2 in the range from 1.0?×?10?5 to 2.0?×?10?3?M and with a detection limit of 2.0?×?10?6?M (at S/N?=?3).
Figure
A biosensor for hydrogen peroxide was constructed by immobilizing horseradish peroxidase on chitosan-wrapped NiFe2O4 nanoparticles on a glassy carbon electrode.  相似文献   

7.
The kinetics of the formation of the titanium‐peroxide [TiO2+2] complex from the reaction of Ti(IV)OSO4 with hydrogen peroxide and the hydrolysis of hydroxymethyl hydroperoxide (HMHP) were examined to determine whether Ti(IV)OSO4 could be used to distinguish between hydrogen peroxide and HMHP in mixed solutions. Stopped‐flow analysis coupled to UV‐vis spectroscopy was used to examine the reaction kinetics at various temperatures. The molar absorptivity (ε) of the [TiO2+2] complex was found to be 679.5 ± 20.8 L mol?1 cm?1 at 405 nm. The reaction between hydrogen peroxide and Ti(IV)OSO4 was first order with respect to both Ti(IV)OSO4 and H2O2 with a rate constant of 5.70 ± 0.18 × 104 M?1 s?1 at 25°C, and an activation energy, Ea = 40.5 ± 1.9 kJ mol?1. The rate constant for the hydrolysis of HMHP was 4.3 × 10?3 s?1 at pH 8.5. Since the rate of complex formation between Ti(IV)OSO4 and hydrogen peroxide is much faster than the rate of hydrolysis of HMHP, the Ti(IV)OSO4 reaction coupled to time‐dependent UV‐vis spectroscopic measurements can be used to distinguish between hydrogen peroxide and HMHP in solution. © 2007 Wiley Periodicals, Inc. Int J Chem Kinet 39: 457–461, 2007  相似文献   

8.
《Analytical letters》2012,45(9):2037-2050
Abstract

The technique of flow injection analysis was employed in the determination of hydrogen peroxide. the method was based on the chemiluminescence reaction of luminol with H2O2 which is catalyzed by horseradish peroxidase and enhanced by p-iodophenol. Hydrogen peroxide was linearly detected in the range 10?6M-10?4M by measuring the maximum intensity of light emitted. the detection limit is about 1 · 10?6M hydrogen peroxide. Transition metal cations at millimolar concentrations do not have any interference on the determination of hydrogen peroxide by FIA based on the enhanced chemiluminescent reaction. This technique is relatively rapid and simple, and permits measurement of up to 80 samples/hr using generally available equipment.  相似文献   

9.
A novel chemiluminescence (CL) method for the determination of hydrogen peroxide is described. Method is based on the transition metals in highest oxidation state complex, which include diperiodatoargentate (DPA) and diperiodatonickelate (DPN) and show excellent sensitisation on the luminol-H2O2 CL reaction with low luminol concentration in alkaline medium. In particular, the sensitiser which was previously reported (such as Co2+, Cu2+, Ni2+, Mn2+, Fe3+, Cr3+, KIO4, K3Fe(CN)6 etc.) to be unobserved CL due to poor sensitisation with such low concentration of luminol which makes the method hold high selectivity. Based on this observation, the detection limits were 6.5?×?10?9?mol?L?1 and 1.1?×?10?8?mol?L?1 hydrogen peroxide for the DPN- and DPA-luminol CL systems, respectively. The relative CL intensity was linear with the hydrogen peroxide concentration in the range of 2.0?×?10?8–6.0?×?10?6?mol?L?1 and 4.0?×?10?8–4.0?×?10?6?mol?L?1 for the DPN- and DPA-luminol CL systems, respectively. The proposed method had good reproducibility with a relative standard deviation of 3.4% (8.0?×?10?7?mol?L?1, n?=?7) and 1.0% (2.0?×?10?6?mol?L?1, n?=?7) for the DPN- and DPA-luminol CL systems, respectively. A satisfactory result has been gained for the determination of H2O2 in rainwater and artificial lake water by use of the proposed method.  相似文献   

10.
《Analytical letters》2012,45(11):1797-1807
Fe3O4 magnetic nanoparticles were synthesized by chemical co-precipitation with sodium citrate as a surfactant and were used with chitosan to construct a novel hydrogen peroxide sensor. The electrochemical behavior of hydrogen peroxide at the sensor was investigated by cyclic voltammetry. The composite film electrocatalyzed the reduction of hydrogen peroxide, and the peak current increased linearly with concentration from 1.00 × 10?5 to 1.00 × 10?3 mol · L?1 (R = 0.9974) with a detection limit of 1.53 × 10?6 mol · L?1. This novel nonenzyme sensor provided good sensitivity, stability, and precision with potential applications.  相似文献   

11.
《Analytical letters》2012,45(14):2725-2735
Abstract

A procedure for fabricating an enzyme electrode has been described based on the effective immobilization of horseradish peroxidase to an ultrathin titania layer–modified self‐assembled gold electrode. The resulting electrode exhibits excellent electrocatalytical activity to hydrogen peroxide in the presence of hydroquinone as a mediator. The analytical conditions were studied in detail by using an amperometric method. Under the optimized conditions, a detection limit of 7.1×10?7 mol l?1 and a linear response to hydrogen peroxide that ranged from 1×10?6 mol l?1 to 7.6×10?4 mol l?1 were obtained. The reproducibility and stability were examined with satisfactory results.  相似文献   

12.
《Electroanalysis》2006,18(4):345-350
Gold modified nanoporous silica based magnetic microparticles have been prepared as support for the immobilization of the enzyme horseradish peroxidase (HRP). The enzyme modified gold microparticles were retained onto the surface of a solid carbon paste electrode with the help of a permanent magnet. The analytical performances of the resulting biosensor were characterized by studying hydroquinone (HQ) and hydrogen peroxide. The former was monitored by the direct electroreduction of the biocatalytically generated quinone. Several experimental parameters influencing the biosensor response were investigated. A linear response to HQ was obtained in the concentration range comprised between 5×10?7 and 4.5×10?6 M with a detection limit of 4×10?7 M. The enzyme electrode provided a linear response to hydrogen peroxide over a concentration range comprised between 5×10?7?1.3×10?4 M with a detection limit of 4×10?7 M. The inhibition of the biosensor response in the presence of thiols e.g. cysteine, captopril, glutathione and Nacystelyn (NAL) has been pointed out.  相似文献   

13.
The chemiluminescence generated from the reaction of bis(2,4,6-trichlorophenyl) oxalate (TCPO), hydrogen peroxide and 1,4-dihydroxy-3-methyl-thioxanthone (DMT) was investigated. Effects of reacting components, solvent and concentrations of TCPO, sodium salicylate, hydrogen peroxide and DMT were studied and their optimal values were determined. In addition, the influences of β-Cyclodextrin (β-CD) on the peroxyoxalate chemiluminescence (PO-CL) system of DMT were examined at optimized condition. The results showed that the presence of β-CD causes both enhancing and quenching effects on PO-CL system of DMT based upon its concentration. The Stern–Volmer quenching constant (K q) was evaluated as 2.32?×?104?M?1 (R 2?= 0.991) by creating a linear regression plot on experimentally obtained data. This study resulted in satisfactorily determination of β-CD in the range 5.0?×?10?6 to 1.0?×?10?4?M.  相似文献   

14.
The degradation of two endocrine disrupting compounds: n-butylparaben (BP) and 4-tert-octylphenol (OP) in the H2O2/UV system was studied. The effect of operating variables: initial hydrogen peroxide concentration, initial substrate concentration, pH of the reaction solution and photon fluency rate of radiation at 254 nm on reaction rate was investigated. The influence of hydroxyl radical scavengers, humic acid and nitrate anion on reaction course was also studied. A very weak scavenging effect during BP degradation was observed indicating reactions different from hydroxyl radical oxidation. The second-order rate constants of BP and OP with OH radicals were estimated to be 4.8×109 and 4.2×109 M?1 s?1, respectively. For BP the rate constant equal to 2.0×1010 M?1 s?1was also determined using water radiolysis as a source of hydroxyl radicals.  相似文献   

15.
The use of grape tissue as a source of catalase for the determination of hydrogen peroxide is reported. A slice of grape tissue attached to the membrane of a Clark-type oxgen sensor was used to monitor the oxidation of hydrogen peroxide by catalase. At the steady state, the sensor responds linearly to hydrogen peroxide in the concentration range 1 × 10?5–5 × 10?4 M. The response time (T90) was of the order of 1 min for this sensor. No interference was observed from ethanol, amino acids, glucose and lactic acid. The long-term stability of the grape tissue sensor was much better than previously reported immobilized enzyme and liver tissue-based hydrogen peroxide sensors.  相似文献   

16.
《Analytical letters》2012,45(16):3148-3157
Abstract

A simple, rapid, and automated assay for hydrogen peroxide in pharmaceutical samples was developed by combining the multicommutation system with a chemiluminescence (CL) detector. The detection was performed using a spiral flow‐cell reactor made from polyethylene tubing that was positioned in front of a photodiode. It allows the rapid mixing of CL reagent and analyte and simultaneous detection of the emitted light. The chemiluminescence was based on the reaction of luminol with hydrogen peroxide catalyzed by hexacyanoferrate(III).

The feasibility of the flow system was ascertained by analyzing a set of pharmaceutical samples. A linear response within the range of 2.2–210 µmol l?1 H2O2 with a LD of 1.8 µmol l?1 H2O2 and coefficient of variations smaller than 0.8% for 1.0×10?5 mol l?1 and 6.8×10?5 mol l?1 hydrogen peroxide solutions (n=10) were obtained. Reagents consumption of 90 µg of luminol and 0.7 mg of hexacyanoferrate(III) per determination and sampling rate of 200 samples per hour were also achieved.  相似文献   

17.
Cetyltrimethylammonium bromide (CTAB) was used to overcome the pH mismatch of the luminol (5-amino-2,3-dihydrophthalazine-1,4-dione ) chemiluminescence reaction when coupled to the glucose/glucose oxidase reaction at neutral pH. The results demonstrate the feasibility of conducting both reactions simultaneously and efficiently at pH 7.5–8.5. The incorporation of the CTAB micellar system in the coupled luminol/enzymatic reaction allows quantification of glucose in the 3 × 10?7?3 × 10?4 M range. The relative standard deviation (RSD) for 5 replicates of 5 × 10?5 M glucose was 3.8%. Also, hydrogen peroxide was quantified in the 1.2 × 10?4?2.4 × 10?8 M range with RSD 2.6%. The micellar-mediated luminol reaction was applied successfully to the determination of glucose in blood serum. Excellent agreement with reported results by standard assays was obtained.  相似文献   

18.
《Electroanalysis》2004,16(20):1690-1696
The electrode mechanism of Mo(VI) reduction was studied under catalytic adsorptive stripping mode by means of square‐wave voltammetry (SWV). Mo(VI) creates a stable surface active complex with mandelic acid. The electrode reaction of Mo(VI)‐mandelic acid system undergoes as one‐electron reduction, exhibiting properties of a surface electrode process. In the presence of chlorate, bromate, and hydrogen peroxide, the electrode reaction is transposed into a catalytic mechanism. The experimental results are compared with the recent theory for surface catalytic reaction, enabling qualitative characterization of the electrode mechanism in the presence of different catalytic agents. Utilizing both the method of “split SW peaks” and “quasireversible maximum” the standard redox rate constant of Mo(VI)‐mandelic acid system was estimates as ks=150±5 s?1. By fitting the experimental and theoretical results, the following catalytic rate constants have been estimated: (8.0±0.5)×104 mol?1 dm3 s?1, (1.0±0.1)×105 mol?1 dm3 s?1, and (3.2±0.1)×106 mol?1 dm3 s?1, for hydrogen peroxide, chlorate, and bromate, respectively.  相似文献   

19.
The method involves the reaction of 4,4′-{oxalyl bis[(trifluoromethylsulfonyl)imino]-ethylene}-bis(4-methylmorpholinium trifluoromethanesulfonate) with hydrogen peroxide in the presence of rhodamine-B. Precise measurements, with 1–3% relative standard deviation, can be made in both static and flow systems. In the flow system, the response to hydrogen peroxide is linear from 10?2 M hydrogen peroxide down to the limit of detection of 7 × 10?5 M.  相似文献   

20.
A solid-state reactor for detection of hydrogen peroxide in aqueous samples by peroxyoxalate chemiluminescence is described. Bis(2,4,6-trichlorophenyl)oxalate in solid form is packed into a bed reactor, which eliminates mixing problems and facilitates the instrumental development. Perylene is added as a sensitizer to a water/acetonitrile (20:80) carrier stream into which the samples (200–600 μl) are injected. Detection limits of 6 × 10?9 M H2O2 (0.2 μg l?1) are obtained with both a commercial and a home-made luminescence detector. Calibration graphs are linear up to 10?5 M. The r.s.d. for 2 × 10?7 M (6.7 μg?1) hydrogen peroxide (n = 10) is 2.8%. Sample throughput is ca. 120 h?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号