首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A TCNQ-modified edge-plane pyrolytic graphite electrode prepared by a dip-coating procedure shows electrocatalytic activity for NADH oxidation in phosphate buffer solutions (pH 7.0). The modified electrode is stable and shows a linear relation for NADH in the concentration range 1–10 mM. The rate constant between adsorbed TCNQ and NADH in solution has been estimated to be 1.46 × 106 M−1s−1 at 25°C. The modified electrode has the potential use as a sensor for dehydrogenase-enzyme-based substrates.  相似文献   

2.
《Analytical letters》2012,45(15):2813-2821
Abstract

A simple procedure is described for co-immobilization of glucose oxidase and dimethylaminomethylferrocene in a sodium alginate gel on the surface of pyrolytic graphite electrode. The film is electrochemically active and the peak current is a function of D-glucose concentration with the apparent Michaelis-Menten constant Km = (1.2±0.3) × 10?2 M. The optimal concentration range for biosensoric applications in 0.001–0.010 M.

  相似文献   

3.
In this study, a simple and sensitive square wave voltammetric procedure has been developed for the determination of acemetacin (ACM) at graphite flake paste electrode (GFPE) and glassy carbon electrode (GCE). Under optimized conditions, the dependence of ACM peak current on its concentration showed wide linear range: 0.03–1.0 μmol L−1 and 0.7–15.0 μmol L−1 at GFPE and GCE, respectively. The developed method was successfully applied for the determination of ACM in pharmaceuticals and spiked urine with satisfying recoveries. The electrochemical oxidation of ACM is an irreversible process controlled by mixed nature of the mass transfer process.  相似文献   

4.
The electrocatalytic oxidation of oxalate at several carbon based electrodes including basal plane (BPPG) and edge plane (EPPG) pyrolytic graphite and glassy carbon (GC) electrode, was studied. The electrodes were examined for the sensing of oxalate ions in aqueous solutions and all three electrodes showed a response to oxalate additions. The peak of oxalate oxidation at BPPG electrode appeared at lower potential, +1.13 V vs. SCE, than at EPPG (+1.20 V vs. SCE) and GC electrode (+1.44 V vs. SCE). Oxalate oxidation at BPPG electrode was studied in more details for response characteristics (potential and current), effects of pH, temporal characteristics of response potential and current. The results indicated that oxalate oxidation proceeds as two‐electron process at the BPPG electrode with a transfer coefficient β and a diffusion coefficient D evaluated to be 0.45 and 1.03 (±0.04)×10?5 cm2 s?1 respectively. The BPPG electrode was found to be suitable for oxalate determination in aqueous media showing linear response to oxalate concentration with a sensitivity of 0.039 AM?1 and a limit of detection of 0.7 μM.  相似文献   

5.
The electrochemical reduction of 5,5′-dichlorohydurilic acid has been studied at the dropping mercury electrode (DME) and the pyrolytic graphite electrode (PGE). At the DME the single polarographic reduction wave observed at pH 6–11 involves a direct 4e—2H+ reduction of the carbon-halogen bond to give hydurilic acid and chloride. The state of hydration or ionization of the 5,5′-dichlorohydurilic acid has no effect on the electrochemical reaction. At the PGE, 5,5′-dichlorohydurilic acid shows two voltammetric peaks. Peak Ic, observed between pH 5 and 7, arises from an overall 4e—2H+ reduction of 5,5′-dichlorohydurilic acid via a mechanism that involves initial electron attack at a carbonyl group alpha to a carbon-halogen bond with simultaneous elimination of chloride ion. The peak IIc process involves an initial 2e—1H+ reduction of a partially hydrated form of 5,5′-dichlorohydurilic acid with only one unhydrated halocarbonyl moiety available for reaction. Attack is again via the carbonyl group with simultaneous elimination of chloride and formation of 5-chlorohydurilic acid. A chemical dehydration step then occurs with a rate constant of ca. 0.24 s?1 at pH 8.2, with formation of a further reducible halocarbonyl group. This is again reduced in an overall 2e—2H+ reaction to give hydurilic acid and chloride ion. The peak IIc process hence proceeds via an ECE mechanism. The different mechanisms observed for reduction of 5,5′-dichlorohydurilic acid at mercury and pyrolytic graphite electrodes are unusual. Analytical methods have been developed for the polarographic determination of 5,5′-dichlorohydurilic acid via its reduction wave at the DME, and for the voltammetric determination of hydurilic acid via its first oxidation peak at the PGE.  相似文献   

6.
A novel amperometric sensor for uric acid based on ordered mesoporous carbon modified pyrolytic graphite electrode was developed. Uric acid oxidation was easily catalyzed by this electrode in a phosphate buffer solution at pH 7.0, with an anodic potential decrease about 140 mV compared to bare pyrolytic graphite electrode. The uric acid level was determined by the amperometric method, at a constant potential of 0.31 mV, the catalytic current of uric acid vs. its concentration showed a good linearity in the range of 1.0 × 10−6−1.0 × 10−4 mol L−1, with a correlation coefficient of 0.999. The detection limit was 4.0 × 10−7 mol L−1. The proposed method could be effectively used for uric acid amperometric sensing in human urine.  相似文献   

7.
《Electroanalysis》2005,17(18):1627-1634
The behavior of chloride, bromide and iodide at edge plane pyrolytic graphite electrodes has been explored in aqueous acid solutions. The voltammetric response in each case has been compared with that of basal plane pyrolytic graphite, glassy carbon and boron‐doped diamond. The electrochemical oxidation of chloride is found to only occur on boron‐doped diamond while the electrochemical reversibility for the oxidation of bromide on edge plane pyrolytic graphite is similar to that seen at glassy carbon whilst being superior to basal plane pyrolytic graphite and boron‐doped diamond. In the case of iodide oxidation, edge plane and basal plane pyrolytic graphite and glassy carbon display similar electrode kinetics but are all superior to boron‐doped diamond. The analytical possibilities were examined using the edge plane pyrolytic graphite electrode for both iodide and bromine where is was found that, based on cyclic voltammetry, detection limits in the order of 10?6 M are possible.  相似文献   

8.
The electrochemical oxidation of ethyl 3-oxo-3-phenyl-2-phenylhydrazonopropionate has been studied in the pH range 3.0–11.0 at a pyrolytic graphite electrode by linear and cyclic sweep voltammetry, coulometry and spectral studies. The results indicate that the 2 e, 2 H+ oxidation of this compound gives phenol and ethyl 3-phenyl-2,3-dioxopropionate as the major products of electrooxidation.  相似文献   

9.
The electrochemical oxidation of 10-methylphenothiazine (PMe) dissolved in 1,2-trans-dibromocyclohexane oil droplets immobilised on a basal plane pyrolytic graphite (BPPG) electrode and bathed by an aqueous electrolyte is a one-electron quasi-reversible process which occurs with the expulsion of the electro-generated cation radical from the oil phase. In the presence of l-cysteine in the aqueous phase, the electro-released cation mediates the redox catalytic oxidation of the thiol. The peak catalytic current is observed to increase linearly with increasing cysteine concentration over the range analysed (10–100 mM).  相似文献   

10.
This paper describes oxidation of the isoquinoline alkaloid, protopine (PR) at a pyrolytic graphite electrode (PGE) using cyclic and square‐wave voltammetry. In the alkaline range (pH 7.5–10.5) of a Britton–Robinson (B–R) buffer, a PR oxidation can be observed as a well‐developed voltammetric peak around +0.9 V (vs. Ag|AgCl|3 M KCl). With increasing pH of the B–R buffer, the PR peak is shifted to less positive potentials. The acquired voltammetric data suggest that PR strongly adsorbs onto the surface of the pyrolytic graphite where it is subjected to irreversible electrochemical oxidation in its uncharged free (tricyclic) base form. The results are discussed in connection with the electrochemical oxidation of other isoquinoline alkaloids and the potential applications of these data.  相似文献   

11.
Goyal RN  Bishnoi S 《Talanta》2011,84(1):78-83
The simultaneous determination of catecholamines - epinephrine and norepinephrine by square wave voltammetry (SWV) at physiological pH 7.2 is reported using multi-walled carbon nanotubes modified edge plane pyrolytic graphite electrode (MWNT/EPPGE). A broad bump at ∼250 mV is appeared for the oxidation of epinephrine (EP) and norepinephrine (NE) at bare EPPGE whereas at MWNT/EPPGE two well-separated peaks at ∼150 and ∼215 mV are appeared for the oxidation of EP and NE, respectively. The oxidation peak current of both the neurotransmitters also increased significantly along with the negative shift of peak potentials using MWNT/EPPGE. The oxidation of both compounds occurred in a pH dependent, 2e and 2H+ process and the electrode reaction followed diffusion controlled pathway. Linear calibration curves were obtained for epinephrine and norepinephrine in the range 0.5-100 nM with limits of detection 0.15 × 10−9 and 0.90 × 10−10 M, respectively. The developed protocol is implemented for the simultaneous determination of epinephrine and norepinephrine in blood plasma and urine samples of smokers as well as in athletes.  相似文献   

12.
《Electroanalysis》2005,17(17):1529-1533
The direct electrochemical oxidation of ascorbic acid at an edge plane pyrolytic graphite electrode (EPPG) is investigated and compared with other common carbon‐based electrodes, specifically glassy carbon, boron doped diamond and basal plane pyrolytic graphite. It is found that the EPPG electrode shows a significantly higher degree of electrochemical reversibility than the other electrode substrates giving rise to an analytically optimized limit of detection and sensitivity of 7.1×10?5 M and 0.065 A M?1 respectively.  相似文献   

13.
A gold (Au) nanoparticle-modified graphite pencil electrode was prepared by an electrodeposition procedure for the sensitive and rapid flow injection amperometric determination of hydrazine (N2H4). The electrodeposited Au nanoparticles on the pretreated graphite pencil electrode surface were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction spectroscopy, and electrochemical impedance spectroscopy. Cyclic voltammograms showed that the Au nanoparticle-modified pretreated graphite pencil electrode exhibits excellent electrocatalytic activity toward oxidation of hydrazine because the highly irreversibly and broadly observed oxidation peak at +600?mV at the pretreated graphite pencil electrode shifted to ?167?mV at the Au nanoparticle pretreated graphite pencil electrode; in addition, a significant enhancement in the oxidation peak current was obtained. Thus, the flow-injection (FI) amperometric hydrazine sensor was constructed based on its electrocatalytic oxidation at the Au nanoparticle-modified pretreated graphite pencil electrode. The Au nanoparticle-modified pretreated graphite pencil electrode exhibits a linear calibration curve between the flow injection amperometric current and hydrazine concentration within the concentration range from 0.01 to 100?µM with a detection limit of 0.002?µM. The flow injection amperometric sensor has been successfully used for the determination of N2H4 in water samples with good accuracy and precision.  相似文献   

14.
A novel and reliable direct electrochemical method has been established to monitor DNA damage in acid hydrolyzed calf thymus DNA, based on the determination of 2,8‐dihydroxyadenine (2,8‐DHA). A single‐wall carbon nanotubes (SWCNT) modified edge plane pyrolytic graphite electrode (EPPGE) has been used as a sensor to monitor the DNA damage. 2,8‐DHA the main in vivo adenine oxidation product undergoes oxidation at ~395 mV at SWCNT modified EPPGE using square wave voltammetry (SWV). The sensor exhibits potent and persistent electron‐mediating behavior. A well‐defined oxidation peak for the oxidation of 2,8‐DHA was observed at modified electrode with lowering of peak potential and increase in peak current as compared to bare EPPGE. At optimal experimental conditions, the catalytic oxidative peak current was responsive with the 2,8‐DHA concentrations ranging from 0.05 nM to 100 nM. The detection limit was 3.8×10?11 M and limit of quantification was 1.27×10?10 M. The modified electrode exhibited high stability and reproducibility.  相似文献   

15.
In this paper, for the first time, electroactivated disposable pencil graphite electrode (ePGE) was used for the detection of bioflavonoid hesperidin with cyclic and differential pulse voltammetry. The electroactivation efficiency of the pencil graphite electrode (PGE) was examined employing electrochemical impedance spectroscopy (EIS) and scanning electrochemical microscopy (SECM) and the enhancement of electron transfer kinetics of the PGE after the electroactivation was found. Hesperidin is irreversibly oxidized on the ePGE and its oxidation was the most pronounced at pH=5.0. Two electrode processes were detected, on one hand, a mixed diffusion and adsorption control was observed for the first electrode process. On the other hand, only diffusion control was observed in the second electrode process. Linear dependence between the peak current and the hesperidin concentration was obtained in the concentration range from 5×10−7 mol dm−3 to 1×10−5 mol dm−3 and the determined lower limit of detection (LOD) was 2×10−7 mol dm−3. Moreover, hesperidin in pharmaceutical formulation (containing active substance, hesperidin, and excipients) was quantified using ePGE. A good correlation was obtained between experimentally obtained hesperidin concentration by voltammetric analysis and concentration determined by standard HPLC technique (R2=0.9462).  相似文献   

16.
The anodic reactions of the halide ions in dimethyl sulfoxide at the pyrolytic graphite electrode have been studied. The iodide ion demonstrates a 3-step oxidation; the bromide, a 2-step oxidation and chloride, a 1-step oxidation. The electrode reaction (X-12 X2 + e-) is complicated by a catalytic reaction occurring after the electrode reaction. The catalytic reaction is important for only bromide and chloride causing a considerable diffusion current enhancement. The αna value for all 3 primary reactions is of the order of 0.5.  相似文献   

17.
A sensitive square-wave voltammetry (SWV) method based on basal-plane pyrolytic graphite electrode (BPPGE) and edge-plane pyrolytic graphite electrode (EPPGE) was developed to determine the concentration of the pesticide mandipropamid (MAN) in spiked river water and grape juice samples. Under optimal experimental conditions, the SWV response of EPPGE and BPPGE was linear over the concentration ranges of 0.7 to 9.0 μmol L−1 and 0.5 to 10.0 μmol L−1, respectively. The method was successfully used to determine MAN in spiked samples with good recovery. Cyclic voltammetry (CV) was conducted to understand the mechanism underlying the electrode process of MAN.  相似文献   

18.
The electrochemical oxidation of guanosine-5-triphosphate has been investigated in phosphate-containing electrolytes in the pH range 1.5–10.9 at a pyrolytic graphite electrode by cyclic sweep voltammetry, spectral studies, bulk electrolysis and related techniques. In this pH range, the oxidation occurred in a single well-defined peak (Ia). The peak potential of oxidation peaks (Ep) was found to be dependent on pH, concentration and sweep rate. The kinetics of the UV-absorbing intermediates was followed spectrophotometrically and the decay of the intermediate occurred in a pseudo-first-order reaction. The first-order rate constants for the disappearance of the UV-absorbing intermediate have also been calculated. The products of the electrode reaction were characterized by HPLC and GC/MS. A tentative mechanism for the formation of the products has also been suggested.  相似文献   

19.
The electrochemical response of sodium levo‐thyroxin (T4) at the surface of an edge plane pyrolytic graphite (EPPG) electrode is investigated using cyclic voltammetric technique in the presence of 0.1 M HCl as supporting electrolyte. T4 underwent totally irreversible oxidation at this system and a well‐defined peak at 821 mV was obtained. Compared to the signals obtained in the optimized conditions at bare glassy carbon and carbon paste electrodes, the oxidation current of T4 at an EPPG electrode was greatly enhanced. The electrochemical process of T4 was explored and the experimental conditions were optimized. The oxidation peak current represented a linear dependence on T4 concentration from 0.01 to 10 µM. The detection limit of 3 nM (S/N=3) was obtained for 250 s accumulation at 0.3 V. Determination of T4 in a synthetic serum sample demonstrated that this sensor has good selectivity and high sensitivity.  相似文献   

20.
Linear sweep voltammetric behaviour of 9-β- -ribofuranosyluric acid 5′-monophosphate (UA-9R-5′-P) has been studied in phosphate buffers of pH 3.0 and 7.0 at the pyrolytic graphite electrode in aqueous and micellar media. At pH 3.0 in the presence of non-ionic and anionic surfactants, UA-9R-5′-P exhibited a single well-defined 2e, 2H+ oxidation peak, whereas in the presence of cationic surfactant (CTAB) the oxidation peak Ia showed a tendency to split into two peaks indicating that the 2e, 2H+ oxidation of UA-9R-5′-P in peak Ia reaction occurs in two 1e steps. The effect of cationic surfactant at pH 3.0 is explained on the basis of hydrophobic penetration of cationic species in cationic micelles. The products of electrode reaction in micellar medium were found as alloxan, urea and ribosyl phosphate at pH 3.0 and ribose, allantoin and 5-hydroxyhydantoin 5-carboxamide at pH 7.0 and were similar to those observed in aqueous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号