首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Macroporous poly(methyl methacrylate-co-divinylbenzene) (PMMA), interpenetrating polymer adsorbent based on poly(styrene-co-divinylbenzene) (PS) and poly(methyl methacrylate-co-divinylbenzene) (PMMA/PS), and macroporous cross-linked poly(N-p-vinylbenzyl acetylamide) (PVBA) were prepared for the adsorption of phenol from cyclohexane. The sorption isotherms of phenol on the three polymeric adsorbents were measured and fitted to Langmuir and Freundlich isotherms. It is shown that the Langmuir isotherm, which is based on a homogeneous surface model, is unsuitable to describe the sorption of phenol on the adsorbents from nonaqueous solution and the Freundlich equation fits the tested three adsorption systems well. The isosteric enthalpy was quantitatively correlated with the fractional loading for the sorption of phenol onto the three polymeric adsorbents. The surface energetic heterogeneity patterns of the adsorbents were described with functions of isosteric enthalpy. The results showed that the tested three polymeric adsorbents exhibited different surface energetic heterogeneity patterns. The initial isosteric enthalpy of phenol sorption on polymeric adsorbent has to do with the surface chemical composition and is free from the pore structure of the polymeric adsorbent matrix. Forming hydrogen bonds between phenol molecules and adsorbent is the main driving force of phenol sorption onto PVBA and PMMA adsorbent from nonaqueous solution. When phenol is adsorbed on PMMA/PS, pi-pi interaction resulting from the stacking of the benzene rings of the adsorbed phenol molecules and the pendant benzene ring of adsorbent is involved.  相似文献   

2.
工业二乙烯苯悬浮聚合制备的大孔树脂,在二氯乙烷溶剂中以无水三氯化铁为催化剂进行悬挂双键后交联反应,得到的后交联树脂的比表面积和孔容都有显著增加.低温氮气吸附/脱附等温线得到的孔径分布曲线证明初始共聚物PDT-55(polydivinylbenzene,toluene as porogen)和PDH-55(polydivinylbenzene,heptane andtoluene as porogen)经后交联反应,所形成的新孔以微孔为主.树脂对水溶液中苯酚和维生素B12(VB12)的静态吸附研究发现树脂经后交联后,对苯酚的吸附量有显著提高,但对VB12的吸附量增加不大,原因是分子尺寸较大的VB12无法进入由悬挂双键后交联反应所形成的微孔.树脂PDT-55pc对苯酚的吸附量大于商品树脂XAD-4;后交联前后树脂PDT-55、PDT-55pc(post-crosslinking of PDT-55)、PDH-55、PDH-55pc(post-crosslinking ofPDH-55)对VB12的吸附量均大于树脂XAD-4.在本研究的实验条件下,Langmiur和Freundlich吸附等温线方程能很好地拟合树脂对水溶液中苯酚和VB12的吸附,相关系数在0.99以上.静态吸附动力学实验结果表明后交联前后树脂对苯酚的吸附较VB12更容易达到吸附平衡.吸附动力学数据的拟合结果显示,McKay二级吸附动力学模型符合树脂对苯酚的吸附,而对VB12的吸附更符合Lagergren一级吸附动力学模型.  相似文献   

3.
Clay-carbon composites and the carbons derived from demineralization of the clay template were examined for their aqueous adsorption properties (2,4,6-trichlorophenol and methylene blue) and for their gas adsorption/separation abilities regarding CO(2), CH(4), and N(2) gases. The sorption results are discussed in relation with their structural properties (surface area, pore width and volume, and surface chemistry). It was found that the properties of the adsorbents depend highly on the synthetic route, for instance, on the use of clay or H(2)SO(4) as structure mediating and activating agents, respectively. Particularly, the simultaneous use of clay and H(2)SO(4) leads to a synergistic action, which imparts to the final solids the highest sorption capacity and the best potential for separation of CO(2) from gaseous mixtures of CH(4) and N(2).  相似文献   

4.
在通过Friedel—Crafts后交联反应制备高度交联聚苯乙烯吸附剂的过程中,向反应体系中加入非极性芳香化合物甲苯,当加入少量甲苯时,吸附剂的比表面积、孔容等变小,但其吸附能力却明显提高;当加入甲苯超过某一量时,其吸附能力又随加入甲苯的量的增加而降低,这说明孔结构和骨架结构共同影响着高度交联聚苯乙烯吸附剂的吸附性能.  相似文献   

5.
This paper presents a part of our work on understanding the effect of nanoscale pore space confinement on ion sorption by mesoporous materials. Acid-base titration experiments were performed on both mesoporous alumina and alumina particles under various ionic strengths. The point of zero charge (PZC) for mesoporous alumina was measured to be approximately 9.1, similar to that for nonmesoporous alumina materials, indicating that nanoscale pore space confinement does not have a significant effect on the PZC of pore surfaces. However, for a given pH deviation from the PZC, (pH-PZC), the surface charge per mass on mesoporous alumina was as much as 45 times higher than that on alumina particles. This difference cannot be fully explained by the surface area difference between the two materials. Our titration data have demonstrated that nanoscale confinement has a significant effect, most likely via the overlap of the electric double layer (EDL), on ion sorption onto mesopore surfaces. This effect cannot be adequately modeled by existing surface complexation models, which were developed mostly for an unconfined solid-water interface. Our titration data have also indicated that the rate of ion uptake by mesoporous alumina is relatively slow, probably due to diffusion into mesopores, and complete equilibration for sorption could take 4-5 min. A molecular simulation using a density functional theory was performed to calculate ion adsorption coefficients as a function of pore size. The calculation has shown that as pore size is reduced to nanoscales (<10 nm), the adsorption coefficients of ions can vary by more than two orders of magnitude relative to those for unconfined interfaces. The prediction is supported by our experimental data on Zn sorption onto mesoporous alumina. Owing to their unique surface chemistry, mesoporous materials can potentially be used as effective ion adsorbents for separation processes and environmental cleanup.  相似文献   

6.
With the aim of obtaining comprehensive information on the selection of synthetic adsorbents for industrial applications, effect of pore and chemical structure of industrial-grade synthetic adsorbents on adsorption capacity of several pharmaceutical compounds was investigated. For relatively low molecular mass compounds, such as cephalexin, berberine chloride and tetracycline hydrochloride, surface area per unit volume of polystyrenic adsorbents dominated the equilibrium adsorption capacity. On the contrary, effect of pore size of the polystyrenic adsorbents on the equilibrium adsorption capacity was observed for relatively high molecular mass compounds, such as rifampicin, Vitamin B12 and insulin. Polystyrenic adsorbent with high surface area and small pore size showed small adsorption capacity for relatively high molecular mass compounds, whereas polystyrenic adsorbent with relatively small surface area but with large pore size showed large adsorption capacity. Effect of chemical structure on the equilibrium adsorption capacity of several pharmaceutical compounds was also studied among polystyrenic, modified polystyrenic and polymethacrylic adsorbents. The modified polystyrenic adsorbent showed larger adsorption capacity for all compounds tested in this study due to enhanced hydrophobicity. The polymethacrylic adsorbent possessed high adsorption capacity for rifampicin and insulin, but it showed lower adsorption capacity for the other compounds studied. This result may be attributed to hydrogen bonding playing major role for the adsorption of compounds on polymethacrylic adsorbent. Furthermore, column adsorption experiments were operated to estimate the effect of pore characteristics of the polystyrenic adsorbents on dynamic adsorption behavior, and it is found that both surface area and pore size of the polystyrenic adsorbents significantly affect the dynamic adsorption capacity as well as flow rate.  相似文献   

7.
交联聚苯乙烯型多孔吸附剂的中孔性质研究   总被引:12,自引:0,他引:12  
采用77K温度下的氮气吸附方法,测定了经悬浮聚合制备的不同交联度的交联聚苯乙烯多孔吸附剂的吸附/脱附等温线.根据BET吸附模型计算了比表面,由吸附量计算了总的孔体积,由孔体积和比表面计算出平均孔径,并依据脱附等温线采用BJH方法计算孔径分布.结果表明,交联度对交联聚苯乙烯多孔吸附剂的孔结构均具有显著影响.随着交联聚苯乙烯多孔吸附剂的交联度升高,其孔径变小,比表面增大,而且低交联度吸附剂的中孔接近圆柱形,高交联吸附剂的中孔形状接近“墨水瓶”形.显然,交联度对孔性质的影响与孔结构在交联聚苯乙烯多孔吸附剂制备和后处理过程中的稳定性密切相关.交联度低时,初期形成的小孔不能保持稳定,在后续聚合及后处理过程中合并为大孔,结果造成低交联吸附剂大孔径、低比表面的现象.通过对孔径分布的研究,揭示了不同吸附剂在中孔范围内的孔特征,并对其形成机制进行了分析.  相似文献   

8.
A technology for obtaining carbonaceous adsorbents by physical and chemical activation of waste materials from coffee industry is described. The effect of pyrolysis temperature and type of activation procedure on the textural parameters, acid–base character of the surface and sorption properties of activated carbons has been tested. The resulting carbons were characterized by low-temperature nitrogen sorption, determination of pH and the number of surface oxygen groups. The sorption properties of the activated carbons obtained were characterized by evaluation of nitrogen dioxide adsorption in dry and wet conditions. The final products were adsorbents of specific surface area ranging from 5 to 2,076 m2/g and pore volume from 0.03 to 1.25 cm3/g, showing very diverse acidic–basic character of the surface. The results obtained in our study have proved that a suitable choice of the pyrolysis and activation procedure for coffee industry wastes permits production of adsorbents with high sorption capacity of nitrogen dioxide, reaching to 44.5 and 84.1 mg NO2/g in dry and wet conditions, respectively.  相似文献   

9.
The dispersity, specific surface area, porosity, and pore size distribution are determined for samples of colloidal silica and calcium o-phosphate, toothpaste constituents. The results obtained show that adsorbents have the developed mesoporous structure. It was found that the adsorption of sodium lauryl sulfate and a nonionic surfactant, glyceryl monocaprylate, at the aqueous surfactant solution-colloidal silica interface is small and has the unusual character. The reasons for a low adsorption of surfactants and their mixtures on the surface of the studied adsorbents are discussed.  相似文献   

10.
Mesoporous carbons with differentiated properties were synthesized by using the method of impregnation of mesoporous well-organized silicas. The obtained carbonaceous materials and microporous activated carbon were investigated by applying different methods in order to determine their structural, surface and adsorption properties towards selected dyes from aqueous solutions. In order to verify applicability of adsorbents for removing dyes the equilibrium and kinetic experimental data were measured and analyzed by applying various equations and models. The structural and acid-base properties of the investigated carbons were evaluated by Small-Angle X-ray Scattering (SAXS) technique, adsorption/desorption of nitrogen, potentiometric titration, and Transmission Electron Microscopy (TEM). The results of these techniques are complementary, indicating the type of porosity and structural ordering, e.g., the pore sizes determined from the SAXS data are in good agreement with those obtained from nitrogen sorption data. The SAXS and TEM data confirm the regularity of mesoporous carbon structure. The adsorption experiment, especially kinetic measurements, reveals the utility of mesoporous carbons in dye removing, taking into account not only the adsorption uptake but also the adsorption rate.  相似文献   

11.
Activated carbons of various origins (bituminous coal, wood, coconut shells, and peat) were studied as adsorbents of hydrogen sulfide. Before the experiments the surface of the adsorbents was characterized by using the sorption of nitrogen, Boehm and potentiometric titrations, thermal analysis, and FTIR. The adsorbents were chosen to differ in their surface areas, pore volumes, and surface acidities. To broaden the spectrum of surface acidity, carbons were oxidized by using nitric acid and ammonium persulfate. After hydrogen sulfide adsorption the species present on the surface were analyzed using thermal analysis, ion chromatography, and elemental analysis. The H(2)S breakthrough capacity tests showed that the performances of different carbons differ significantly. For a good performance of carbons as hydrogen sulfide adsorbents a proper combination of surface chemistry of carbon and porosity is needed. It was demonstrated that a more acidic environment promotes the formation of sulfur oxides and sulfuric acid despite yielding small H(2)S removal capacities. On the other hand, a basic environment favors the formation of elemental sulfur (sulfur radicals) and yields high capacities. The presence of a sufficient amount of water preadsorbed on the carbon surface to facilitate dissociation also plays an important role in the process of H(2)S adsorption/oxidation. The results showed that there is a critical value in carbon surface acidity, which when exceeded results in a negligible hydrogen sulfide breakthrough capacity. This is consistent with the mechanism of H(2)S adsorption on unmodified carbons, where the rate-limiting step is the reaction of adsorbed hydrogen sulfide ion with dissociatively adsorbed oxygen. When the acidity is expressed as pH, its value should be higher than 5 to ensure the effective removal of hydrogen sulfide from the gas phase. Study of carbon regeneration using water washing and heat treatment showed that the adsorbents can be regenerated to about 40% of their initial capacity.  相似文献   

12.
In this research, naphthalene was adopted as the representative model compound of PAHs, and static adsorption of naphthalene from aqueous solution onto three commercial polymeric adsorbents with different pore structure was investigated. Nonlinear isotherms models, i.e., Freundlich, Langmuir, and Polanyi-Dubinin-Manes (PDM) models were tested to fit experimental data, and the experimental data were found to fit well by the PDM model. Through both isotherm modeling and constructing "characteristic curve," Polanyi theory was useful to describe the adsorption process of naphthalene by polymeric adsorbents, providing evidence that a micropore filling phenomenon was involved during the adsorption process. In addition, a good linear correlation was obtained between the naphthalene adsorption capacities and the micropore volume of adsorbents (Vmicro), whereas no linear relationship was found between the naphthalene adsorption capacities and the specific surface area of adsorbents. Based on the PDM model, the micropore volumes of adsorbents was introduced to normalize the equilibrium adsorbed volume (qv), plots of qv/V(micro) vs adsorption potential density for naphthalene on three different polymeric adsorbents were collapsed to a single correlation curve, which would be of great benefit to predict the adsorption capacity of adsorbent for the purpose of adsorption engineering design.  相似文献   

13.
用X-射线光电子能谱对3种植物基活性炭材料:椰壳活性炭 (CAC4)、剑麻茎基活性炭(SSAC)和剑麻基活性碳纤维 (SACF) 的表面化学结构进行了表征,并研究和对比了它们的吸附性能,包括对碘、苯酚和亚甲基蓝的液相吸附性能,对有机蒸汽的吸附性能以及对Au3+的还原吸附性能等。结果表明,3个样品表面均含有多种含氧官能团,吸附能力SACF>SSAC> CAC4。样品的吸附性能主要取决于自身孔结构,与其表面化学结构也有密切的关系。  相似文献   

14.
The possibility of using pyrolyzed wastes produced in already working incineration plants, as adsorbents for waste water treatment, was studied. Showing very poor adsorption properties, they were improved by steam activation technique used in the conventional activated carbon manufacturing. It is concluded that various organic waste materials can be converted to carbonaceous final products with a character similar to activated carbon. Their adsorption properties and pore size distribution are determined by the structure of the starting material. Although most of these samples have a low specific surface area, their pore volume is not negligible in the meso-and micropore range. Adsorption tests with model waste waters confirmed that adsorption properties are strongly influenced by the character of the suface. The adsorption capacity of these samples can be utilized for the treatment of strongly polluted industrial waste waters. Considering that the raw material ‘needed’ to manufacture these adsorbent is produced permanently and the adsorbents do not have to be regenerated, it might be worthwhile using these kinds of adsorbents in the primary treatment of industrial waste waters.  相似文献   

15.
The mesoporous silica gels impregnated with different metal salts were prepared and studied. The pore structure and specific surface area of adsorbents were evaluated using nitrogen adsorption. Then, the sorption isotherms and dynamics of water vapor were carried out at 303 K and different relative humidity (RH). The temperature programmed desorption experiments were conducted to estimate the activation energy (E d) of water desorption on the silica gels. The results showed that the sorption capacity for water decreased with the increase of the ionic radius (except the calcium ion) and that CaCl2 and LiCl were particularly suitable for use in modification of the mesoporous silica gel to improve their sorption rates and capacities for water vapor at the lower and medium RH (RH < 80%). The larger the average pore diameter and pore volume of the initial silica gels, higher the accrual rates of the water vapor sorption rate and capacity were after modification with hygroscopic salts. The activation energy of the water desorption on the mesoporous silica gel modified by CaCl2 were much higher than that on the silica gel modified by LiCl, because the polarizability of the Ca2+ was higher than that of Li+.  相似文献   

16.
Paraquat adsorption onto clays and organoclays from aqueous solution   总被引:6,自引:0,他引:6  
Clays were compared with organoclays for the sorption of paraquat from aqueous solution. Sepiolite (S), bentonite (B), and illite (I) were used as clay samples. Organoclays were prepared by the modification of the clays with nonyl- and dodecylammonium chlorides, denoted as NS, DS, NB, DB, NI, and DI, respectively. Specific surface area and pore size distribution of the samples were determined by N2 adsorption-desorption at 77 K using the BET method. X-ray powder diffraction analysis of the samples was used to determine the effects of modifying agents on the layer structure of the clays. In the adsorption experiments, C(m) values increased from 0.038 mmol/g for DS to 0.223 mmol/g for NI. Kd0.3 values ranged from 0.177 for DS to 0.843 for NI. The adsorption data indicated that illite and NI are the most effective adsorbents among these clays and organoclay samples, respectively.  相似文献   

17.
Adsorption of heavy metal ions from aqueous solutions on tri-amino-functionalized silica hybrids with tailored structural characteristics was investigated. The adsorbents were prepared using a controllable sol–gel method with (3-aminopropyl)trimethoxysilane or 3-[2-(2-aminoethylamino)ethylamino] propyltrimethoxysilane, polymeric polymethylhydrosilane and tetraethoxysilane as co-precursors in the absence of traditional surfactant aggregates. These as-prepared hybrids possess tailored structures with high specific surface area, large pore volumes and relatively narrow pore diameter as confirmed by transmission electron microscopy and nitrogen sorption results. The elemental analysis and FT-IR indicated that amino groups had been successfully introduced into the opened skeletons. The loadings of amino moieties of the amino-functionalized gels could be tuned from 5 to 40% by adjusting the molar ratio of organoalkoxysilane/silica in the synthesis system. The heavy metal adsorption experiments have been examined for Cu(II), Pb(II), Ni(II), Cd(II) and Zn(II) from aqueous solution employing batch method. The results showed that the adsorption capacity of the tri-amino-functionalized adsorbents was higher than that of the mono-amino-functionalized counterparts, illustrating a good potential for environmental remediation in virtue of the combination of selective adsorption performance and large-scale synthesis character.  相似文献   

18.
The equilibrium and kinetics of levulinic acid (LA) adsorption on two basic polymeric adsorbents, 335 (highly porous gel) and D315 (macroreticular), were investigated. Experimental adsorption rates in batch stirred vessels under a variety of operating conditions were described successfully by the parallel pore and surface diffusion model taking into account external mass transfer and nonlinear Toth isotherm. The film-pore diffusion model was matched with the rate data and the resulting apparent pore diffusivities were strongly concentration-dependent and approached to a constant value for 335 adsorbent. Thus, the constant value was taken as the accurate pore diffusivity, while the pore diffusivity in D315 was estimated from the particle porosity. The surface diffusivities decreased with increasing initial bulk concentration for both adsorbents. The inverse concentration dependence was correlated reasonably well to the change of isosteric heat of adsorption as amount adsorbed.  相似文献   

19.
The equilibrium and dynamic adsorption data of H(2) and D(2) on different micro- and mesoporous adsorbents with orderly structure including 3A, 4A, 5A, Y, and 10X zeolites; carbon CMK-3; silica SBA-15; and so forth were collected. Critical effect of the nanodimension of adsorbents on the adsorption behavior of hydrogen and its isotopes is shown. The highest adsorption capacity was observed at pore size 0.7 nm, but equal or even larger isotope difference in the equilibrium adsorption was observed at larger pore sizes, whereas the largest isotope difference in the dynamic adsorption was observed at 0.5 nm. The adsorption rate of D(2) is larger than that of H(2) in microporous adsorbents, but the sequence could be switched over in mesoporous materials. Linear relationship was observed between the adsorption capacity for hydrogen and the specific surface area of adsorbents although the adsorbents are made of different material, which provides a convincing proof of the monolayer mechanism of hydrogen adsorption. The linear plot for microporous adsorbents has a larger slope than that for mesoporous adsorbents, which is attributed to the stronger adsorption potential in micropores.  相似文献   

20.
A new technology of obtaining activated carbons by physical and direct activation of biomass with the use of microwave radiation is described. The effect of activation temperature (700 and 800 °C) and two periods of time (15 and 30 min) on the textural parameters, acid–base character of the surface and sorption properties of activated carbons was tested. The resulting carbons were characterized by low-temperature nitrogen sorption and determination of pH as well as the number of surface oxygen groups. The sorption properties of the activated carbons obtained were characterized by determination of nitrogen dioxide and hydrogen sulphide adsorption in dry and wet conditions as well as by iodine removal from aqueous solution. The final products were adsorbents of surface area ranging from 291 to 368 m2/g and pore volume from 0.20 to 0.26 cm3/g, showing basic character of the surface. The results obtained in our study have proved that suitable choice of the pyrolysis and activation procedure for hay with the use of microwave radiation permit producing adsorbents with good capacity toward toxic gases of acidic character as well as inorganic pollutants of molecules of size similar to that of iodine molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号