首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorine dioxide oxidation of cysteine (CSH) is investigated under pseudo-first-order conditions (with excess CSH) in buffered aqueous solutions, p[H+] 2.7-9.5 at 25.0 degrees C. The rates of chlorine dioxide decay are first order in both ClO2 and CSH concentrations and increase rapidly as the pH increases. The proposed mechanism is an electron transfer from CS- to ClO2 (1.03 x 10(8) M(-1) s(-1)) with a subsequent rapid reaction of the CS* radical and a second ClO2 to form a cysteinyl-ClO2 adduct (CSOClO). This highly reactive adduct decays via two pathways. In acidic solutions, it hydrolyzes to give CSO(2)H (sulfinic acid) and HOCl, which in turn rapidly react to form CSO3H (cysteic acid) and Cl-. As the pH increases, the (CSOClO) adduct reacts with CS- by a second pathway to form cystine (CSSC) and chlorite ion (ClO2-). The reaction stoichiometry changes from 6 ClO2:5 CSH at low pH to 2 ClO2:10 CSH at high pH. The ClO2 oxidation of glutathione anion (GS-) is also rapid with a second-order rate constant of 1.40 x 10(8) M(-1) s(-1). The reaction of ClO2 with CSSC is 7 orders of magnitude slower than the corresponding reaction with cysteinyl anion (CS-) at pH 6.7. Chlorite ion reacts with CSH; however, at p[H+] 6.7, the observed rate of this reaction is slower than the ClO2/CSH reaction by 6 orders of magnitude. Chlorite ion oxidizes CSH while being reduced to HOCl, which in turn reacts rapidly with CSH to form Cl-. The reaction products are CSSC and CSO3H with a pH-dependent distribution similar to the ClO2/CSH system.  相似文献   

2.
The oxidation of ClO(2) by OCl(-)is first order with respect to both reactants in the neutral to alkaline pH range: -d[ClO(2)]/dt = 2k(OCl)[ClO(2)][OCl(-)]. The rate constant (T = 298 K, mu = 1.0 M NaClO(4)) and activation parameters are k(OCl) = 0.91 +/- 0.02 M(-1) s(-1), DeltaH = 66.5 +/- 0.9 kJ/mol, and DeltaS(++) = -22.3 +/- 2.9 J/(mol K). In alkaline solution, pH > 9, the primary products of the reaction are the chlorite and chlorate ions and consumption of the hypochlorite ion is not observed. The hypochlorite ion is consumed in increasing amounts, and the production of the chlorite ion ceases when the pH is decreased. The stoichiometry is kinetically controlled, and the reactants/products ratios are determined by the relative rates of the production and consumption of the chlorite ion in the ClO(2)/OCl(-) and HOCl/ClO(2)(-) reactions, respectively.  相似文献   

3.
The oxidation reactions of N-acetylthiourea (ACTU) by chlorite and chlorine dioxide were studied in slightly acidic media. The ACTU-ClO(2)(-) reaction has a complex dependence on acid with acid catalysis in pH > 2 followed by acid retardation in higher acid conditions. In excess chlorite conditions the reaction is characterized by a very short induction period followed by a sudden and rapid formation of chlorine dioxide and sulfate. In some ratios of oxidant to reductant mixtures, oligo-oscillatory formation of chlorine dioxide is observed. The stoichiometry of the reaction is 2:1, with a complete desulfurization of the ACTU thiocarbamide to produce the corresponding urea product: 2ClO(2)(-) + CH(3)CONH(NH(2))C=S + H(2)O --> CH(3)CONH(NH(2))C=O + SO(4)(2-) + 2Cl(-) + 2H(+) (A). The reaction of chlorine dioxide and ACTU is extremely rapid and autocatalytic. The stoichiometry of this reaction is 8ClO(2)(aq) + 5CH(3)CONH(NH(2))C=S + 9H(2)O --> 5CH(3)CONH(NH(2))C=O + 5SO(4)(2-) + 8Cl(-) + 18H(+) (B). The ACTU-ClO(2)(-) reaction shows a much stronger HOCl autocatalysis than that which has been observed with other oxychlorine-thiocarbamide reactions. The reaction of chlorine dioxide with ACTU involves the initial formation of an adduct which hydrolyses to eliminate an unstable oxychlorine intermediate HClO(2)(-) which then combines with another ClO(2) molecule to produce and accumulate ClO(2)(-). The oxidation of ACTU involves the successive oxidation of the sulfur center through the sulfenic and sulfinic acids. Oxidation of the sulfinic acid by chlorine dioxide proceeds directly to sulfate bypassing the sulfonic acid. Sulfonic acids are inert to further oxidation and are only oxidized to sulfate via an initial hydrolysis reaction to yield bisulfite, which is then rapidly oxidized. Chlorine dioxide production after the induction period is due to the reaction of the intermediate HOCl species with ClO(2)(-). Oligo-oscillatory behavior arises from the fact that reactions that form ClO(2) are comparable in magnitude to those that consume ClO(2), and hence the assertion of each set of reactions is based on availability of reagents that fuel them. A computer simulation study involving 30 elementary and composite reactions gave a good fit to the induction period observed in the formation of chlorine dioxide and in the autocatalytic consumption of ACTU in its oxidation by ClO(2).  相似文献   

4.
The oxidation of dihydronicotinamide adenine dinucleotide (NADH) by chlorine dioxide in phosphate buffered solutions (pH 6-8) is very rapid with a second-order rate constant of 3.9 x 10(6) M(-1) s(-1) at 24.6 degrees C. The overall reaction stoichiometry is 2ClO2(*) per NADH. In contrast to many oxidants where NADH reacts by hydride transfer, the proposed mechanism is a rate-limiting transfer of an electron from NADH to ClO2(*). Subsequent sequential fast reactions with H(+) transfer to H2O and transfer of an electron to a second ClO2(*) give 2ClO2(-), H3O(+), and NAD(+) as products. The electrode potential of 0.936 V for the ClO2(*)/ClO2(-) couple is so large that even 0.1 M of added ClO2(-) (a 10(3) excess over the initial ClO2(*) concentration) fails to suppress the reaction rate.  相似文献   

5.
The rate of oxidation of ClO2- by HOCl is first order in each reactant and is general-acid catalyzed. In the initial steps of the proposed mechanism, a steady-state intermediate, HOClOClO-, forms (k1 = 1.6 M-1 s-1) and undergoes general-acid (HA)-catalyzed reactions (k2HA) to generate a metastable intermediate, ClOClO. Values of k2HA/k-1 are 1.6 x 10(4) M-1 (H3O+), 20 M-1 (HOAc), and 8.5 M-1 (H2PO4-). Subsequent competitive reactions of ClOClO with ClO2- (k3) to give 2ClO2 and with OH- (k4OH) and other bases (k5B) to give ClO3- are very rapid. The relative yields of these products give k4OH/k3 = 1.3 x 10(5), k5HPO4/k3 = 0.20, and k5OAc/k3 = 0.06. At low pH and low buffer concentrations, the apparent yield of ClO2, based on 2ClO2 per initial HOCl, reaches 140%. This anomaly is attributed to the induced disproportionation of ClO2- by ClOClO to give ClO3- and additional HOCl. A highly reactive intermediate, ClOCl(O)OClO-, is proposed that can undergo Cl-O bond cleavage to give 2ClO2 + Cl- via one path and ClO3- + 2HOCl via another path. The additional HOCl recycles in the presence of excess ClO2- to give more ClO2. Ab initio calculations show feasible structures for the proposed reaction intermediates. Acetic acid has a second catalytic role through the formation of acetyl hypochlorite, which is much more reactive than HOCl in the transfer of Cl+ to ClO2- to form ClOClO.  相似文献   

6.
The reaction between BrO2(-) and excess HOCl (p[H+] 6-7, 25.0 degrees C) proceeds through several pathways. The primary path is a multistep oxidation of HOCl by BrO(2)(-) to form ClO(3)(-) and HOBr (85% of the initial 0.15 mM BrO(2)(-)). Another pathway produces ClO(2) and HOBr (8%), and a third pathway produces BrO(3)(-) and Cl(-) (7%). With excess HOCl concentrations, Cl(2)O also is a reactive species. In the proposed mechanism, HOCl and Cl(2)O react with BrO(2)(-) to form steady-state species, HOClOBrO(-) and ClOClOBrO(-). Acid facilitates the conversion of HOClOBrO(-) and ClOClOBrO(-) to HOBrOClO(-). These reactions require a chainlike connectivity of the intermediates with alternating halogen-oxygen bonding (i.e. HOBrOClO(-)) as opposed to Y-shaped intermediates with a direct halogen-halogen bond (i.e. HOBrCl(O)O(-)). The HOBrOClO(-) species dissociates into HOBr and ClO(2)(-) or reacts with general acids to form BrOClO. The distribution of products suggests that BrOClO exists as a BrOClO.HOCl adduct in the presence of excess HOCl. The primary products, ClO(3)(-) and HOBr, are formed from the hydrolysis of BrOClO.HOCl. A minor hydrolysis path for BrOClO.HOCl gives BrO(3)(-) and Cl(-). An induction period in the formation of ClO(2) is observed due to the buildup of ClO(2)(-), which reacts with BrOClO.HOCl to give 2 ClO(2) and Br(-). Second-order rate constants for the reactions of HOCl and Cl(2)O with BrO(2)(-) are k(1)(HOCl) = 1.6 x 10(2) M(-1) s(-1) and k(1)(Cl)()2(O) = 1.8 x 10(5) M(-)(1) s(-)(1). When Cl(-) is added in large excess, a Cl(2) pathway exists in competition with the HOCl and Cl(2)O pathways for the loss of BrO(2)(-). The proposed Cl(2) pathway proceeds by Cl(+) transfer to form a steady-state ClOBrO species with a rate constant of k(1)(Cl2) = 8.7 x 10(5) M(-1) s(-1).  相似文献   

7.
The oxidation of 1-phenyl-2-thiourea (PTU) by chlorite was studied in aqueous acidic media. The reaction is extremely complex with reaction dynamics strongly influenced by the pH of reaction medium. In excess chlorite concentrations the reaction stoichiometry involves the complete desulfurization of PTU to yield a urea residue and sulfate: 2ClO2- + PhN(H)CSNH2 + H2O --> SO4(2-) + PhN(H)CONH2 + 2Cl- + 2H+. In excess PTU, mixtures of sulfinic and sulfonic acids are formed. The reaction was followed spectrophotometrically by observing the formation of chlorine dioxide which is formed from the reaction of the reactive intermediate HOCl and chlorite: 2ClO2- + HOCl + H+ --> 2ClO2(aq) + Cl- + H2O. The complexity of the ClO2- - PTU reaction arises from the fact that the reaction of ClO2 with PTU is slow enough to allow the accumulation of ClO2 in the presence of PTU. Hence the formation of ClO2 was observed to be oligooscillatory with transient formation of ClO2 even in conditions of excess oxidant. The reaction showed complex acid dependence with acid catalysis in pH conditions higher than pKa of HClO2 and acid retardation in pH conditions of less than 2.0. The rate of oxidation of PTU was given by -d[PTU]/dt = k1[ClO2-][PTU] + k2[HClO2][PTU] with the rate law: -d[PTU]/dt = [Cl(III)](T)[PTU]0/K(a1) + [H+] [k1K(a1) + k2[H+]]; where [Cl(III)]T is the sum of chlorite and chlorous acid and K(a1) is the acid dissociation constant for chlorous acid. The following bimolecular rate constants were evaluated; k1 = 31.5+/-2.3 M(-1) s(-1) and k2 = 114+/-7 M(-1) s(-1). The direct reaction of ClO2 with PTU was autocatalytic in low acid concentrations with a stoichiometric ratio of 8:5; 8ClO2 + 5PhN(H)CSNH2 + 9H2O --> 5SO4(2-) + 5PhN(H)CONH2 + 8Cl- + 18H+. The proposed mechanism implicates HOCl as a major intermediate whose autocatalytic production determined the observed global dynamics of the reaction. A comprehensive 29-reaction scheme is evoked to describe the complex reaction dynamics.  相似文献   

8.
The complex mechanism of the uncatalyzed and Ru(III)-catalyzed oxidation of toluidine blue [(7-amino-8-methylphenothiazin-3-ylidene)dimethyl ammonium chloride, TB(+)Cl(-)] (λ(max) = 626 nm) by acidic chlorite is elucidated by a kinetic approach. Both the uncatalyzed and catalyzed reactions had a first-order dependence on the initial ClO(2)(-) and H(+) concentrations ([ClO(2)(-)](0) and [H(+)](0), respectively). The catalyzed reaction had a first-order dependence on the initial Ru(III) concentration ([Ru(III)](0)). The overall reaction of toluidine blue and chlorite ion was as follows: TB(+) + 5ClO(2)(-) + H(+) = P + 2ClO(2) + 2HCOOH + 3Cl(-) + H(2)O, where P is (7-amino-8-methyl-5-sulfoxophenothiazin-3-ylidene)amine. Consistent with the experimental results, the pertinent reaction mechanisms are proposed.  相似文献   

9.
The (*)OH-induced oxidation of 1,3,5-trithiacyclohexane (1) in aqueous solution was studied by means of pulse radiolysis with optical and conductivity detection. This oxidation leads, via a short-lived (*)OH radical adduct (<1 micros), to the radical cation 1(*+) showing a broad absorption with lambda(max) equal to 610 nm. A defined pathway of the decay of 1(*+) is proton elimination. It occurs with k = (2.2 +/- 0.2) x 10(4) s(-1) and yields the cyclic C-centered radical 1(-H)(*). The latter radical decays via ring opening (beta-scission) with an estimated rate constant of about 10(5) s(-1). A distinct, immediate product (formed with the same rate constant) is characterized by a narrow absorption band with lambda(max) = 310 nm and is attributed to the presence of a dithioester function. The formation of the 310 nm absorption can be suppressed in the presence of oxygen, the rationale for this being a reaction of the C-centered cyclic radical 1(-H)(*) with O(2). The disappearance of the 310 nm band (with a rate constant of 900 s(-1)) is associated with the hydrolysis of the dithioester functionality. A further aspect of this study deals with the reaction of H(*) atoms with 1 which yields a strongly absorbing, three-electron-bonded 2sigma/1sigma* radical cation [1(S therefore S)-H](+) (lambda(max) = 400 nm). Its formation is based on an addition of H(*) to one of the sulfur atoms, followed by beta-scission, intramolecular sulfur-sulfur coupling (constituting a ring contraction), and further stabilization of the S therefore S bond thus formed by protonation. [1(S therefore S)-H](+) decays with a first-order rate constant of about 10(4) s(-1). Its formation can be suppressed by the addition of oxygen which scavenges the H(*) atoms prior to their reaction with 1. Complementary time-resolved conductivity experiments have provided information on the quantification of the 1(*+) radical cation yield, the cationic longer-lived follow-up species, extinction coefficients, and kinetics concerning deprotonation processes as well as further reaction steps after hydrolysis of the transient dithioesters. The results are also discussed in the light of previous photochemical studies.  相似文献   

10.
The kinetics of the oxidation of a substituted thiourea, trimethylthiourea (TMTU), by chlorite have been studied in slightly acidic media. The reaction is much faster than the comparable oxidation of the unsubstituted thiourea by chlorite. The stoichiometry of the reaction was experimentally deduced to be 2ClO2- + Me2N(NHMe)C=S + H2O --> 2Cl- + Me2N(NHMe)C=O + SO4(2-) + 2H+. In excess chlorite conditions, chlorine dioxide is formed after a short induction period. The oxidation of TMTU occurs in two phases. It starts initially with S-oxygenation of the sulfur center to yield the sulfinic acid, which then reacts in the second phase predominantly through an initial hydrolysis to produce trimethylurea and the sulfoxylate anion. The sulfoxylate anion is a highly reducing species which is rapidly oxidized to sulfate. The sulfinic and sulfonic acids of TMTU exists in the form of zwitterionic species that are stable in acidic environments and rapidly decompose in basic environments. The rate of oxidation of the sulfonic acid is determined by its rate of hydrolysis, which is inhibited by acid. The direct reaction of chlorine dioxide and TMTU is autocatalytic and also inhibited by acid. It commences with the initial formation of an adduct of the radical chlorine dioxide species with the electron-rich sulfur center of the thiocarbamide followed by reaction of the adduct with another chlorine dioxide molecule and subsequent hydrolysis to yield chlorite and a sulfenic acid. The bimolecular rate constant for the reaction of chlorine dioxide and TMTU was experimentally determined as 16 +/- 3.0 M(-1) s(-1) at pH 1.00.  相似文献   

11.
The reaction of nitrous acid with hydrogen peroxide leads to nitric acid as the only stable product. In the course of this reaction, peroxynitrous acid (ONOOH) and, in the presence of CO(2), a peroxynitrite-CO(2) adduct (ONOOCO(2)(-)) are intermediately formed. Both intermediates decompose to yield highly oxidizing radicals, which subsequently react with excess hydrogen peroxide to yield peroxynitric acid (O(2)NOOH) as a further intermediate. During these reactions, (15)N chemically induced dynamic nuclear polarization (CIDNP) effects are observed, the analysis of the pH dependency of which allows the elucidation of mechanistic details. The formation and decay of peroxynitric acid via free radicals NO(2)(*) and HOO(*) is demonstrated by the appearance of (15)N CIDNP leading to emission (E) in the (15)N NMR signal of O(2)NOOH during its formation and to enhanced absorption (A) during its decay reaction. Additionally, the (15)N NMR signal of the nitrate ion (NO(3)(-)) appears in emission at pH approximately 4.5. These observations are explained by proposing the intermediate formation of short-lived radical anions O(2)NOOH(*)(-) probably generated by electron transfer between peroxynitric acid and peroxynitrate anion, followed by decomposition of O(2)NOOH(*)(-) into NO(3)(-) and HO(*) and NO(2)(-) and HOO(*) radicals, respectively. The feasibility of such reactions is supported by quantum-chemical calculations at the CBS-Q level of theory including PCM solvation model corrections for aqueous solution. The release of free HO(*) radicals during decomposition of O(2)NOOH is supported by (13)C and (1)H NMR product studies of the reaction of preformed peroxynitric acid with [(13)C(2)]DMSO (to yield the typical "HO(*) products" methanesulfonic acid, methanol, and nitromethane) and by ESR spectroscopic detection of the HO(*) and CH(3)(*) radical adducts to the spin trap compound POBN in the absence and presence of isotopically labeled DMSO, respectively.  相似文献   

12.
The chlorite-tetrathionate reaction has been studied spectrophotometrically in the pH range of 4.65-5.35 at T = 25.0 +/- 0.2 degrees C with an ionic strength of 0.5 M, adjusted with sodium acetate as a buffer component. The reaction is unique in that it demonstrates autocatalysis with respect to the hydrogen and chloride ion products and the key intermediate, HOCl. The thermodynamically most-favorable stoichiometry, 2S(4)O(6)2- + 7ClO2- + 6H2O --> 8SO(4)2- + 7Cl- + 12H+, is not found. Under our experimental conditions, chlorine dioxide, the chlorate ion, or both are detected in appreciable amounts among the products. Initial rate studies reveal that the formation of chlorine dioxide varies in an unusual way, with the chlorite ion acting as a self-inhibitor. The reaction is supercatalytic (i.e., second order with respect to autocatalyst H+). The autocatalytic behavior with respect to Cl- comes from chloride catalysis of the chlorite-hypochlorous acid and hypochlorous acid-tetrathionate subsystems. A detailed kinetic study and a model that explains this unusual kinetic behavior are presented.  相似文献   

13.
The Rose Bengal‐sensitized photooxidations of the dipeptides l ‐tryptophyl‐l ‐phenylalanine (Trp‐Phe), l ‐tryptophyl‐l ‐tyrosine (Trp‐Tyr) and l ‐tryptophyl‐l ‐tryptophan (Trp‐Trp) have been studied in pH 7 water solution using static photolysis and time‐resolved methods. Kinetic results indicate that the tryptophan (Trp) moiety interacts with singlet molecular oxygen (O2(1Δg)) both through chemical reaction and through physical quenching, and that the photooxidations can be compared with those of equimolecular mixtures of the corresponding free amino acids, with minimum, if any, influence of the peptide bond on the chemical reaction. This is not a common behavior in other di‐ and polypeptides of photooxidizable amino acids. The ratio between chemical (kr) and overall (kt) rate constants for the interaction O2(1Δg)‐dipeptide indicates that Trp‐Phe and Trp‐Trp are good candidates to suffer photodynamic action, with krlkt values of 0.72 and 0.60, respectively (0.65 for free Trp). In the case of Trp‐Tyr, a lower krlkt value (0.18) has been found, likely as a result of the high component of physical deactivation of O2(1Δg) by the tyrosine moiety. The analysis of the photooxidation products shows that the main target for O2(1Δg) attack is the Trp group and suggests a much lower accumulation of kynurenine‐type products, as compared with free Trp. This is possibly because of the occurrence of another accepted alternative pathway of oxidation that gives rise to 3a‐oxidized hydrogenated pyrrolo[2,3‐b]indoles.  相似文献   

14.
Beta-carotene scavenges triplet diacetyl generated by laser flash photolysis with a second-order rate constant of 9.1+/-0.9 x 10(9) M(-1) s(-1) in deaerated benzene at 20 degrees C. In the presence of oxygen diacetyl dissociates to generate acetylperoxyl radicals. It is demonstrated that diacetyl does not dissociate to any appreciable extent in the absence of oxygen. The acetylperoxyl radical is scavenged by beta-carotene with second-order rate constant 9.2+/-0.6 x 10(8) M(-1) s(-1) in aerated benzene at 20 degrees C to give an adduct between the acetylperoxyl radical and beta-carotene, whereas no evidence of oxidation of beta-carotene by the strongly oxidizing acetylperoxyl radical to give the beta-carotene radical cation is found. This adduct decays with first-order rate constant 1.35+/-0.16 x 10(3) s(-1) to give (presumably) a beta-carotene epoxide and the acetyloxyl radical.  相似文献   

15.
Umile TP  Wang D  Groves JT 《Inorganic chemistry》2011,50(20):10353-10362
Chlorine dioxide, an industrially important biocide and bleach, is produced rapidly and efficiently from chlorite ion in the presence of water-soluble, manganese porphyrins and porphyrazines at neutral pH under mild conditions. The electron-deficient manganese(III) tetra-(N,N-dimethyl)imidazolium porphyrin (MnTDMImP), tetra-(N,N-dimethyl)benzimidazolium (MnTDMBImP) porphyrin, and manganese(III) tetra-N-methyl-2,3-pyridinoporphyrazine (MnTM23PyPz) were found to be the most efficient catalysts for this process. The more typical manganese tetra-4-N-methylpyridiumporphyrin (Mn-4-TMPyP) was much less effective. Rates for the best catalysts were in the range of 0.24-32 TO/s with MnTM23PyPz being the fastest. The kinetics of reactions of the various ClO(x) species (e.g., chlorite ion, hypochlorous acid, and chlorine dioxide) with authentic oxomanganese(IV) and dioxomanganese(V)MnTDMImP intermediates were studied by stopped-flow spectroscopy. Rate-limiting oxidation of the manganese(III) catalyst by chlorite ion via oxygen atom transfer is proposed to afford a trans-dioxomanganese(V) intermediate. Both trans-dioxomanganese(V)TDMImP and oxoaqua-manganese(IV)TDMImP oxidize chlorite ion by 1-electron, generating the product chlorine dioxide with bimolecular rate constants of 6.30 × 10(3) M(-1) s(-1) and 3.13 × 10(3) M(-1) s(-1), respectively, at pH 6.8. Chlorine dioxide was able to oxidize manganese(III)TDMImP to oxomanganese(IV) at a similar rate, establishing a redox steady-state equilibrium under turnover conditions. Hypochlorous acid (HOCl) produced during turnover was found to rapidly and reversibly react with manganese(III)TDMImP to give dioxoMn(V)TDMImP and chloride ion. The measured equilibrium constant for this reaction (K(eq) = 2.2 at pH 5.1) afforded a value for the oxoMn(V)/Mn(III) redox couple under catalytic conditions (E' = 1.35 V vs NHE). In subsequent processes, chlorine dioxide reacts with both oxomanganese(V) and oxomanganese(IV)TDMImP to afford chlorate ion. Kinetic simulations of the proposed mechanism using experimentally measured rate constants were in agreement with observed chlorine dioxide growth and decay curves, measured chlorate yields, and the oxoMn(IV)/Mn(III) redox potential (1.03 V vs NHE). This acid-free catalysis could form the basis for a new process to make ClO(2).  相似文献   

16.
Using pulse radiolysis and steady-state gamma-radiolysis techniques, it has been established that, in air-saturated aqueous solutions, peroxyl radicals CH 2HalOO (*) (Hal = halogen) derived from CH 2Cl 2 and CH 2Br 2 react with dimethyl selenide (Me 2Se), with k on the order of 7 x 10 (7) M (-1) s (-1), to form HCO 2H, CH 2O, CO 2, and CO as final products. An overall two-electron oxidation process leads directly to dimethyl selenoxide (Me 2SeO), along with oxyl radical CH 2HalO (*). The latter subsequently oxidizes another Me 2Se molecule by a much faster one-electron transfer mechanism, leading to the formation of equal yields of CH 2O and the dimer radical cation (Me 2Se) 2 (*+). In absolute terms, these yields amount to 18% and 28% of the CH 2ClO (*) and CH 2BrO (*) yields, respectively, at 1 mM Me 2Se. In competition, CH 2HalO (*) rearranges into (*)CH(OH)Hal. These C-centered radicals react further via two pathways: (a) Addition of an oxygen molecule leads to the corresponding peroxyl radicals, that is, species prone to decomposition into H (+)/O 2 (*-) and formylhalide, HC(O)Hal, which further degrades mostly to H (+)/Hal (-) and CO. (b) Elimination of HHal yields the formyl radical H-C(*)=O with a rate constant of about 6 x 10 (5) s (-1) for Hal = Cl. In an air-saturated solution, the predominant reaction pathway of the H-C(*)=O radical is addition of oxygen. The formylperoxyl radical HC(O)OO (*) thus formed reacts with Me 2Se via an overall two-electron transfer mechanism, giving additional Me 2SeO and formyloxyl radicals HC(O)O(*). The latter rearrange via a 1,2 H-atom shift into (*)C(O)OH, which reacts with O2 to give CO2 and O2(*)(-). The minor fraction of H-C(*)=O undergoes hydration, with an estimated rate constant of k approximately 2 x 10(5) s(-1). The resulting HC(*)(OH)2 radical, upon reaction with O2, yields HCO 2H and H (+)/O2(*-). Some of the conclusions about the reactions of halogenated alkoxyl radicals are supported by quantum chemical calculations [B3LYP/6-31G(d,p)] taking into account the influence of water as a dielectric continuum [by the self-consistent reaction field polarized continuum model (SCRF=PCM) technique]. Based on detailed product studies, mechanisms are proposed for the free-radical degradation of CH 2Cl 2 and CH 2Br 2 in the presence of oxygen and an electron donor (namely, Me 2Se in this study), and properties of the reactive intermediates are discussed.  相似文献   

17.
Fluorescence, phosphorescence and electron paramagnetic resonance techniques were used to investigate the effect of the antioxidant spermine on the initial photophysical reactions of tryptophan (Trp) in aqueous salt solutions at 77 K. At low concentrations of Trp (3.5 X 10(-5) M) a ground state complex was formed between one Trp and two spermine molecules (a 1:2 complex). Complexed Trp was photodegraded at a rate 65% lower than the free molecule due to a change in the charge-transfer character of the excited 1La state. At high concentrations of Trp (3.5 X 10(-3) M) the phosphorescence was almost completely quenched due to hydrogen-bond formation between two neighbouring Trp molecules. A strong complex was formed between this Trp dimer and one spermine molecule on addition of spermine (a 2:1 complex). Spermine enhanced intersystem crossing in one of the two Trp molecules in the 2:1 complex and phosphorescence was observed. From this triplet state the tryptophyl radical was formed with high efficiency by hydrogen-atom transfer. The yield of radical formation from the triplet state in the 2:1 complex was much larger than from the excited singlet state in the 1:2 complex.  相似文献   

18.
The matrix isolation technique with Fourier transform infrared detection has been applied to determine the products of gaseous radical reactions. The gas phase reactions were carried out in a discharge flow system and about 1% of the gas mixture was deposited onto a low temperature target through a pinhole. A differential pumping scheme was employed to maintain the pressure of the cryosystem below 10?5 torr while that of the flow system was kept at about 2 torr. Species including HO2 (from the H+O2 reaction), ClO2 (from the Cl+O2 reaction) and ClO (from the Cl+O3 reaction) have been produced in the gas phase and were successfully trapped in matrices and detected with an FTIR spectrometer. In addition, both HCl and HOCl have been detected as the reaction products from the gaseous ClO+HO3 reaction. The production of HCl from the ClO+HO2 reaction may have a significant impact on catalytic ozone destruction in the atmosphere.  相似文献   

19.
The reactions between edaravone and various one-electron oxidants such as (*)OH, N(3)(*), Br(2)(-), and SO(4)(-), have been studied by pulse radiolysis techniques. The transient species produced by the reaction of edaravone with (*)OH radical shows an absorption band with lambda(max)=320 nm, while the oxidation by N(3)(*), Br(2)(-), SO(4)(-) and CCl(3)OO(*) results in an absorption band with lambda(max)=345 nm. Different from the previous reports, the main transient species by the reaction of edaravone with (*)OH radical in the absence of O(2) is attributed to OH-adducts. At neutral condition (pH 7), the rate constants of edaravone reacting with (*)OH, N(3)(*), SO(4)(-), CCl(3)OO(*), and e(aq)(-) are estimated to be 8.5x10(9), 5.8x10(9), 6x10(8), 5.0x10(8) and 2.4x10(9)dm(3)mol(-1)s(-1), respectively. From the pH dependence on the formation of electron adducts and on the rate constant of edaravone with hydrated electron, the pK(a) of edaravone is estimated to be 6.9+/-0.1.  相似文献   

20.
OClO与OH反应机理的理论研究   总被引:4,自引:0,他引:4  
用密度泛函B3LYP/-311+G~(* *)和级电子相关倒映 合簇CCSD(T)/6-311+G~(* *)方法研究了OClO与OH反应的微观机理,研究结果表明:该反应经过缔合、H转移 和离解等复杂过程,最终得到四种产物,分别为HOCl+O_2,HCl+O_3,ClO+HO_2和 HOClO_2,从能量上看,形成HOCl+O_2和HCl+O_3的通道更容易进行,而形成 ClO+HO_2的通首在动力学上是最不利的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号