首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Under ambient conditions, a water meniscus generally forms between a nanoscale atomic force microscope tip and a hydrophilic surface. Using a lattice gas model for water and thermodynamic integration methods, we calculate the capillary force due to the water meniscus for both hydrophobic and hydrophilic tips at various humidities. As humidity rises, the pull-off force rapidly reaches a plateau value for a hydrophobic tip but monotonically increases for a weakly hydrophilic tip. For a strongly hydrophilic tip, the force increases at low humidities (<30%) and then decreases. We show that mean-field density functional theory reproduces the simulated pull-off force very well.  相似文献   

2.
The silicon surface of commercial atomic force microscopy (AFM) probes loses its hydrophilicity by adsorption of airborne and package-released hydrophobic organic contaminants. Cleaning of the probes by acid piranha solution or discharge plasma removes the contaminants and renders very hydrophilic probe surfaces. Time-of-flight secondary-ion mass spectroscopy and X-ray photoelectron spectroscopy investigations showed that the native silicon oxide films on the AFM probe surfaces are completely covered by organic contaminants for the as-received AFM probes, while the cleaning methods effectively remove much of the hydrocarbons and silicon oils to reveal the underlying oxidized silicon of the probes. Cleaning procedures drastically affect the results of adhesive force measurements in water and air. Thus, cleaning of silicon surfaces of the AFM probe and sample cancelled the adhesive force in deionized water. The significant adhesive force values observed before cleaning can be attributed to formation of a bridge of hydrophobic material at the AFM tip-sample contact in water. On the other hand, cleaning of the AFM tip and sample surfaces results in a significant increase of the adhesive force in air. The presence of water soluble contaminants at the tip-sample contact lowers the capillary pressure in the water bridge formed by capillary condensation at the AFM tip-sample contact, and this consequently lowers the adhesive force.  相似文献   

3.
Water condenses between an atomic force microscope (AFM) tip and a surface to form a nanoscale bridge that produces a significant adhesion force on the tip. As humidity increases, the water bridge always becomes wider but the adhesion force sometimes decreases. The authors show that the humidity dependence of the adhesion force is intimately related to the structural properties of the underlying water bridge. A wide bridge whose width does not vary much with tip-surface distance can increase its volume as distance is increased. In this case, the adhesion force decreases as humidity rises. Narrow bridges whose width decreases rapidly with increasing tip-surface distance give the opposite result. This connection between humidity dependence of the adhesion force and the structural susceptibility of the water bridge is illustrated by performing Monte Carlo simulations for AFM tips with various hydrophilicities.  相似文献   

4.
Bubble and particle velocities in water and alcohols, under the influence of an electric field, were investigated in this work. Air bubbles were injected into the liquids through an electrified metal capillary insulated by glass with its tip left exposed. The end of the capillary from which the bubbles were released was conical in shape. Due to an electric field formed between the noninsulated capillary tip and a ground electrode immersed in the solvent, small bubbles were formed and used as tracers for the electrohydrodynamic (EHD) flow field. The pressure inside the capillary was measured for all liquids used in this study. For water, ethanol, and n-propanol, it was found that, at relatively low applied voltage, the pressure increases with voltage, reaches a maximum (pressure breakpoint), and then sharply decreases. This behavior is a result of the competition between the electric force appearing at the interface and the force due to the EHD flow near the capillary tip. The electric force tends to increase the pressure inside the capillary, while the EHD flow tends to decrease this pressure. For isopropanol and butanol, the pressure breakpoint was not observed in the range of voltage applied in the experiments. The EHD flow velocity was measured by using microbubbles and particles as flow tracers. An adaptive phase-Doppler velocimeter was employed to measure the velocity of bubbles, while the velocity of particles was measured by trajectory visualization of fluorescent particles. A discrepancy was observed between the two methods because of the location at which the measurements were made. It was found that average velocities of both bubbles and particles increase linearly with applied voltage. Experiments were also conducted to investigate pumping of water, which is a result of the EHD velocity near the capillary tip. The pumping flow rate was linearly related to the applied voltage and agreed well with EHD velocity measurements obtained from particle trajectories. Copyright 2000 Academic Press.  相似文献   

5.
We report the study of electrowetting (EW) effects under strong electric field on poly(methyl methacrylate) (PMMA) surface by using friction force microscopy (FFM). The friction force dependence on the electric field at nanometer scale can be closely related to electrowetting process based on the fact that at this scale frictional behavior is highly affected by capillary phenomena. By measuring the frictional signal between a conductive atomic force microscopy (AFM) tip and the PMMA surface, the ideal EW region (Young-Lippmann equation) and the EW saturation were identified. The change in the interfacial contact between the tip and the PMMA surface with the electric field strength is closely associated with the transition from the ideal EW region to the EW saturation. In addition, a reduction of the friction coefficient was observed when increasing the applied electric field in the ideal EW region.  相似文献   

6.
Transport mechanisms involved in capillary condensation of water menisci in nanoscopic gaps between hydrophilic surfaces are investigated theoretically and experimentally by atomic force microscopy (AFM) measurements of capillary force. The measurements showed an instantaneous formation of a water meniscus by coalescence of the water layers adsorbed on the AFM tip and sample surfaces, followed by a time evolution of meniscus toward a stationary state corresponding to thermodynamic equilibrium. This dynamics of the water meniscus is indicated by time evolution of the meniscus force, which increases with the contact time toward its equilibrium value. Two water transport mechanisms competing in this meniscus dynamics are considered: (1) Knudsen diffusion and condensation of water molecules in the nanoscopic gap and (2) adsorption of water molecules on the surface region around the contact and flow of the surface water toward the meniscus. For the case of very hydrophilic surfaces, the dominant role of surface water transportation on the meniscus dynamics is supported by the results of the AFM measurements of capillary force of water menisci formed at sliding tip-sample contacts. These measurements revealed that fast movement of the contact impedes on the formation of menisci at thermodynamic equilibrium because the flow of the surface water is too slow to reach the moving meniscus.  相似文献   

7.
During the tip approach to hydrophobic surfaces like the water/air interface, the measured interaction force reveals a strong attraction with a range of approximately 250 nm at some points along the interface. The range of this force is approximately 100 times larger than the measured for gold (approximately 3 nm) and 10 times larger than the one for hydrophobic silicon surfaces (approximately 25 nm). At other points the interface exerts a medium range repulsive force growing stepwise as the tip approaches the interface plane, consequently the hydrophobic force is a strong function of position. To explain these results we propose a model where the force on the tip is associated with the exchange of a small volume of the interface with a dielectric permittivity epsilon(int) by the tip with a dielectric permittivity epsilon(tip). By assuming a oscillatory spatial dependence for the dielectric permittivity it is possible to fit the measured force profiles. This dielectric spatial variation was associated with the orientation of the water molecules arrangement in the interfacial region. Small nanosized hydrogen-bond connected cages of water molecules present in bulk water at the interface are oriented by the interfacial electric field generated by the water molecules broken bonds, one broken hydrogen bond out of every four. This interfacial field orients small clusters formed by approximately 100 water molecules into larger clusters (approximately 100 nm). In the limit of small (less than 5 nm thick) water molecule cages we have modeled the static dielectric permittivity (epsilon) as the average response of those cages. In these regions the dielectric permittivity for water/air interfaces decreases monotonically from the bulk value epsilon approximately 80 to approximately 2 at the interface. For regions filled with medium size cages, the tip senses the structure of each cage and the static dielectric permittivity is matched to the geometrical features of these cages sized approximately 25 to 40 nm. Interfacial electric energy density values were calculated using the electric field intensity and the dielectric permittivity obtained by the fitting of the experimental points. The integration of the electric energy density along the interfacial region gives a value of 0.072 J m(-2) for interfacial energy density for points where the hydrophobic force has a range of approximately 250 nm. Regions formed by various clusters result in lower values of the interfacial energy density.  相似文献   

8.
9.
The shape of micro‐droplets of water on a pure copper surface was investigated using the a.c. non‐contact mode of an atomic force microscope (AFM) by applying different attractive forces between the cantilever tip and the liquid surface. The forces largely influenced the observed radii of micro‐droplets; the influence can be reduced significantly by reducing the force. The same attractive force between the cantilever tip and the micro‐droplets is necessary when comparing the contact angles of micro‐droplets on different surfaces. Furthermore, the values of the contact angles of the micro‐droplets should be the average of those on at least four sides of the droplets. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
We report experimental results which show that the interfacial deformation around glass particles (radius, 200-300 microm) at an oil-water (or air-water) interface is dominated by an electric force, rather than by gravity. It turns out that this force, called for brevity "electrodipping," is independent of the electrolyte concentration in the water phase. The force is greater for oil-water than for air-water interfaces. Under our experimental conditions, it is due to charges at the particle-oil (instead of particle-water) boundary. The derived theoretical expressions, and the experiment, indicate that this electric force pushes the particles into water. To compute exactly the electric stresses, we solved numerically the electrostatic boundary problem, which reduces to a set of differential equations. Convenient analytical expressions are also derived. Both the experimental and the calculated meniscus profile, which are in excellent agreement, exhibit a logarithmic dependence at long distances. This gives rise to a long-range electric-field-induced capillary attraction between the particles, detected by other authors. Deviation from the logarithmic dependence is observed at short distances from the particle surface due to the electric pressure difference across the meniscus. The latter effect gives rise to an additional short-range contribution to the capillary interaction between two floating particles. The above conclusions are valid for either planar or spherical fluid interfaces, including emulsion drops. The electrodipping force, and the related long-range capillary attraction, can engender two-dimensional aggregation and self-assembly of colloidal particles. These effects could have implications for colloid science and the development of new materials.  相似文献   

11.
The reversible desorption and adsorption of ethanethiol (ET) and hexadecane thiol (HDT) self-assembled monolayers (SAMs) on gold substrates are addressed with potential-dependent AFM force measurements where both tip and substrate potentials are controlled independently. For HDT-modified tip and substrate, the potential dependence of the force curve corresponds to the observed voltammetric features. The adhesion interaction between HDT-modified tip and substrate exhibits a large adhesion, whereas the adhesion is reduced to one-quarter of its original value after HDT on the substrate is removed. The presence of both attractive features on the approach curve and large adhesion on retraction after thiol desorption are ascribed to micelle formation from the desorbed, insoluble, thiols above the Au surface. For the ET-modified tip and substrate, the force curve evinces time-dependent recovery after the thiol adsorption peak which arises from the finite time of diffusion of the desorbed thiol back to the substrate. However, the force curves exhibit little potential dependence when the ET-desorbed tip is interacted with ET-modified substrate.  相似文献   

12.
Yang et al. reported pull-off force measurements between an atomic force microscope tip and a silicon wafer. They deduced the pressure of liquid water inside the capillary bridge formed in humid air. They claimed that their ‘research shows that nanoscale water capillary bridges are metastable and have absolutely negative pressure approaching the limit of stability for water’ (around −200 MPa at room temperature). Indeed, pressures reaching −160 MPa were reported, establishing a world record. However, we show that the bridges are not metastable, that the analysis used suffers from internal inconsistency, and that several assumptions made are questionable.  相似文献   

13.
Charge-transfer interaction, as a reversible and rapid phenomenon, was evidenced by force microscopy. Pull-off forces were measured between a tip grafted with a trinitrofluorenone derivative and a surface functionalized with an electron-rich aromatic anthracene compound in a dodecane environment. The effect of the sweep time on the measured interaction forces is described, together with an extensive study of a competitive influence of free aromatic molecules in dodecane diluted solutions. These forces depend on the nature of the competitor and its concentration as well as on the velocity of tip/sample separation.  相似文献   

14.
The formation of nanobubbles on hydrophobic self-assembled monolayers has been examined in a binary ethanol/water titration using small angle X-ray scattering (SAXS) and atomic force microscopy (AFM). The AFM data demonstrates a localized force effect attributed to nanobubbles on an immersed hydrophobic surface. This evidence is arguably compromised by the possibility that the AFM tip actually nucleates nanobubbles. As a complementary noninvasive technique, SAXS has been used to investigate the interfacial region of the immersed hydrophobic surface. SAXS measurements reveal an electron density depletion layer at the hydrophobic interface, with changing air solubility in the immersing liquid, due to the formation of nanobubbles.  相似文献   

15.
Scanning force microscopy has been used to characterize the surface structure and properties of poly(ethylene terephthalate) (PET) films. Two types of biaxially oriented film have been studied: one (Melinex O) is free of additives while the other (Mylar D) contains particulate additives at the surface. Contact mode characterization of both materials provide clear images of the polymer surface and (in the case of Mylar D) the additives. Phase images reveal substantial nanoscale morphological detail, including small features thought to be crystallites. To model the adhesive properties of polymer surfaces, mixed self‐assembled monolayers containing polar and methyl terminated adsorbates were studied using chemical force microscopy. It was found that the strength of the tip‐sample adhesion increased with the fraction of polar terminated adsorbates at the surface when a carboxylic acid terminated tip was employed, while the trend was reversed when a methyl terminated tip was used. Adhesion forces measured for plasma treated PET increased with treatment time, and linearly with the cosine of the water contact angle, illustrating the chemical selectivity of chemical force microscopy. However, friction forces were found to vary in a non‐linear fashion, indicating that changes to the polymer surface mechanical properties following treatment were important.  相似文献   

16.
The origin of the large relative-humidity (RH) dependence of the adhesion force in the single-asperity contact between silicon oxide surfaces is elucidated. As RH increases, the adhesion force measured with an atomic force microscopy (AFM) initially increases, reaches a maximum, and then decreases at high RH. The capillary force alone cannot explain the observed magnitude of the RH dependence. The origin of the large RH dependence is due to the presence of an icelike structured water adsorbed at the silicon oxide surface at room temperature. A solid-adsorbate-solid model is developed calculating the contributions from capillary forces, van der Waals interactions, and the rupture of an ice-ice bridge at the center of the contact region. This model illustrates how the structure, thickness, and viscoelastic behavior of the adsorbed water layer influence the adhesion force of the silicon oxide nanoasperity contact.  相似文献   

17.
We use computer modelling to investigate the mechanism of atomic-scale corrugation in frequency modulation atomic force microscopy imaging of inorganic surfaces in solution. Molecular dynamics simulations demonstrate that the forces acting on a model microscope tip result from the direct interaction between a tip and a surface, and forces entirely due to the water structure around both tip and surface. The observed force is a balance between largely repulsive potential energy changes as the tip approaches and the entropic gain when water is sterically prevented from occupying sites near the tip and surface. Only extremely sharp tips are likely to measure direct tip-surface interactions. An investigation into the dynamics of water confined between tip and surface shows that water diffusion can be slowed by at least two orders of magnitude compared to its rate in bulk solution.  相似文献   

18.
We have measured the single intermolecular force of a typical photoionizable molecule, spirobenzopyran, by means of atomic force microscopy, which has proven to be useful in measuring directly single molecular forces. The spirobenzopyran moiety was immobilized covalently on both Au-coated probe tips and substrates by use of a self-assembled monolayer of a hexanethiol derivative incorporating a terminal spirobenzopyran moiety, 1'-(6'-mercaptohexyl)-3',3'-dimethylindolino-6-nitrospiro-(2H-1-benzopyran-2,2'-indoline). Force curve measurements were carried out using the spirobenzopyran-modified probe tip and substrate under dark conditions and in situ UV light irradiation. The adhesion force observed in a polar solvent (i.e., ethanol) was increased substantially under in situ UV light irradiation, which caused photoisomerization of the spirobenzopyran moiety bound to both tip and substrate from its electrically neutral spiropyran form to the corresponding zwitterionic merocyanine one. Statistical analyses of the observed force by autocorrelation technique have revealed that the photoionization enhanced by UV light caused a remarkable increase in the single intermolecular force of the photochromic compound.  相似文献   

19.
Lateral force microscopy (LFM) is an application of atomic force microscopy (AFM) to sense lateral forces applied to the AFM probe tip. Recent advances in tissue engineering and functional biomaterials have shown a need for the surface characterization of their material and biochemical properties under the application of lateral forces. LFM equipped with colloidal probes of well-defined tip geometries has been a natural fit to address these needs but has remained limited to provide primarily qualitative results. For quantitative measurements, LFM requires the successful determination of the lateral force or torque conversion factor of the probe. Usually, force calibration results obtained in air are used for force measurements in liquids, but refractive index differences between air and liquids induce changes in the conversion factor. Furthermore, in the case of biochemically functionalized tips, damage can occur during calibration because tip-surface contact is inevitable in most calibration methods. Therefore, a nondestructive in situ lateral force calibration is desirable for LFM applications in liquids. Here we present an in situ hydrodynamic lateral force calibration method for AFM colloidal probes. In this method, the laterally scanned substrate surface generated a creeping Couette flow, which deformed the probe under torsion. The spherical geometry of the tip enabled the calculation of tip drag forces, and the lateral torque conversion factor was calibrated from the lateral voltage change and estimated torque. Comparisons with lateral force calibrations performed in air show that the hydrodynamic lateral force calibration method enables quantitative lateral force measurements in liquid using colloidal probes.  相似文献   

20.
Atomic force spectroscopy (AFS) was used to measure interaction forces between the tip and nanostructured layers of poly(o-ethoxyaniline) (POEA) in pure water and CuSO4 solutions. When the tip approach and retraction were carried out at low speeds, POEA chains could be physisorbed onto the Si3N4 tip via nonspecific interactions. We conjecture that while detaching, POEA chains were stretched and the estimated chain lengths were consistent with the expected values from the measured POEA molecular weight. The effects from POEA doping could be investigated directly by performing AFS measurements in a liquid cell, with the POEA film exposed to liquids of distinct pH values. For pH > or = 6.0, the force curves normally displayed an attractive region for POEA, but at lower pH values-where POEA is protonated-the repulsive double-layer forces dominated. Measurements in the liquid cell could be further exploited to investigate how the film morphology and the force curve are affected when impurities are deliberately introduced in the liquid. The shape of the force curves and the film morphology depended on the concentration of heavy metal in the liquid cell. AFS may therefore be used to study the interaction between film and analyte, with important implications for the understanding of mechanisms governing the sensing ability of taste sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号