首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以聚酰亚胺薄膜为原料,经炭化形成碳膜;进而在碳膜表面制备了类金刚石碳(DLC)薄膜,研究了制备条件对碳膜导电性能的影响.采用扫描电镜分析了薄膜的表面形貌和微观结构;采用X射线衍射仪分析了薄膜的晶体结构.结果表明,DLC薄膜的电阻率随着沉积时间的延长先减小后增加;当沉积时间达到3 h时,相应DLC薄膜的电阻率达到最小值5.66×10-5Ω.m.  相似文献   

2.
New film-forming metal-containing polymer compositions based on an alicyclic polyimide and on arylalicyclic copolyimides synthesized from tricyclodecene-, oxydiphenyl-, and benzophenonetetracarboxylic dianhydrides and oxydianiline in the presence of cobalt, nickel, iron, and copper salts in amide solvents were prepared, and their main properties were studied. Optimum synthesis conditions and compositions of metalcontaining composites with improved thermal, electrical, and other characteristics were found. The possibility of using the modified alicyclic polyimide films for fabricating integrated circuits by magnetron sputtering was examined. The samples prepared by sputtering of metals onto SPI-1 polyimide films with a chromium sublayer are characterized by high adhesion of the metal to the film surface.  相似文献   

3.
Mechanical properties of polyimide films are degraded by exposure to a low earth orbit environment. The main environmental factor for that degradation is atomic oxygen (AO). Using tensile tests, AO-irradiated surface topography observations, and fracture surface analyses, this study investigated the degradation behavior of polyimide films’ mechanical properties by increased AO fluence and its accompanying degradation mechanisms. Tensile strength and elongation of polyimide films were reduced concomitantly with increased AO fluence. Furthermore, AO-irradiated polyimide films fractured from the AO-irradiated surfaces, of which roughness became marked as AO fluence increased. These results reflect that reduction of mechanical properties is attributable to the roughness increase in AO-irradiated surfaces. Polyimide films coated with indium tin oxide (ITO) were also evaluated to confirm the degradation behavior of AO protective films. Surfaces of ITO-coated polyimide films remained smooth even after AO irradiation. However, undercut cavities were formed at ITO coating defect sites. Rupture of ITO-coated polyimide films initiates from the undercut cavities, engendering large reduction of tensile strength and elongation. The degradation of the mechanical properties of ITO-coated polyimide films increased substantially until the undercut cavities fully penetrated the film.  相似文献   

4.
In this work, the optical absorption and thermal properties of polyimide aerogel have been investigated by Infrared Camera, ultraviolet–visible and photoacoustic spectroscopy under low energy proton irradiation. The characterization method of the infrared camera can obtain the optical absorption ratio, and meanwhile get the information of specific heat capacity. Moreover, it can acquire the nature information of damaged area rather than the overall performance. The results show an increase in optical absorption after proton irradiation, which is in good coincidence with Ultraviolet–visible spectroscopy analysis. And the specific heat capacity decreased linearly with proton fluences, which can be attributed to the irradiation damage and carbonization in polyimide aerogel. The Raman spectra suggested the cleavage of chemical bonds and carbonization in polyimide aerogel. This work provides the novel, non-destructive and sensitive methods to characterize irradiation damage of aerogel.  相似文献   

5.
Results of examination of bilayer polyimide and fluorinated polyimide films after their exposure to outer space on the Mir space station are reported. The polyimide films were screened by quartz plates during exposure. An increase in the surface energy and the work of adhesion indicate substantial hydrophilization of the open surface, as well as slight hydrophilization of the screened film surface. A difference in values of the surface energy and work of adhesion depending on the orientation of a sample relative to the direction of motion of the space station indicates that the surface properties of the outer surface of the unscreened film became anisotropic in character, with the anisotropy axis being aligned with the direction of motion of the spacecraft. The fact that the outer surface of the film has acquired anisotropic properties is corroborated by the results of study of scanning electron microscopic images and polar plots of brightness. The hydrophilization of the films indicates an increase in the concentration of polar groups. In the space environment, the degradation of the fluoropolymer surface layer and its removal under high-vacuum conditions take place. For the quartz-shielded polyimide films, the surface energy and the work of adhesion remained practically the same as for the unexposed films. It was concluded that solar radiation (μ > 200 nm) does not cause a significant decline in the properties of the polyimide film.  相似文献   

6.
We report a fully additive-based electrochemical approach to the site-selective deposition of silver on a polyimide substrate. Using a cathode coated with ion-doped precursor polyimide layers, patterns of metal masks used as anodes were successfully reproduced at the cathode-precursor interface through electrochemical and ion-exchange reactions, which resulted in the generation of silver patterns on the polyimide films after subsequent annealing and removal from the substrate. Excellent interfacial adhesion was achieved through metal nanostructures consisting of interconnecting silver nanoparticles at the metal-polymer interface, which are electrochemically grown "in" the precursor layer. This approach is a resist- and etch-free process and thus provides an effective methodology toward lower-cost and high-throughput microfabrication.  相似文献   

7.
Using poly(amic acid) (PAA) as a precursor followed by thermal imidization, the polyimide/silica nanocomposite films were prepared via an improved sol–gel process and a blending process, respectively. FT‐IR, TEM and TGA measurements were used to characterize the structure and properties of the obtained films. The results confirmed that the introduction of silica did not yield negative effects on the conversion of the PAA precursor to the polyimide. With the increase of silica content, the aggregation of silica appeared in the polyimide matrix, and the thermal stability decreased slightly for both kinds of films. The dielectric constant (ε) of both films increased slowly with the increase of the silica concentration. The dielectric constant of the obtained polyimide/silica nanocomposite films displayed good stability within a wide range of temperatures or frequency. Based on modeling relation between ε and silica content, the difference in dielectric properties for two kinds of nanocomposites are discussed. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
《先进技术聚合物》2018,29(5):1404-1413
We aimed at enhancing interaction in the polyimide/sepiolite hybrid films with the loading of sepiolite in the polyimide matrix ranged from 0 to 8 wt% via acid activating and polydopamine doping. First, sepiolite was treated with a 3M HCl solution under reflux conditions. Then the acid‐activated sepiolite was coated by mussel‐inspired polydopamine under alkaline conditions. The coated polydopamine was found to successfully enhance dispersibility of sepiolite in the polyimide matrix. The modification of the sepiolite in the hybrid films was investigated by Fourier transform infrared spectroscopy, wide‐angle X‐ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis, and transmission electron microscope. The results indicated that polydopamine coating could increase interaction between the polyimide matrix and sepiolite.  相似文献   

9.
The mesoscopic simulation technique was applied to describe the phase separation behavior of polyimide blends and used for design of immiscible polyimide/BN blend films with enhanced thermal conductivity. The simulation equilibrium morphologies of different poly(amic acid)(PAA) blend systems were investigated and compared with optical images of corresponding polyimide blend films obtained by experiment. The immiscible polyimide blend films containing nano-/micro-sized BN with vertical double percolation structure were prepared. The result indicated that the thermal conductivity of polyimide blend film with 25 wt% nano-sized BN reached1.16 W/(m·K), which was 236% increment compared with that of the homogenous film containing the same BN ratio. The significant enhancement in thermal conductivity was attributed to the good phase separation of polyimide matrix, which made the inorganic fillers selectively localized in one continuous phase with high packing density, consequently, forming the effective thermal conductive pathway.  相似文献   

10.
《Solid State Sciences》2012,14(4):545-549
Highly preferred orientation 3C-SiC films were deposited on Si (111) substrates by a modified two-step carbonization method. The crystal quality of SiC films were examined by XRD. To evaluate the effect of the introducing of silane during carbonization, cross-sectional SEM was carried out. Results indicated that the introducing of silane during carbonization is effective to prevent the out-diffusion of silicon atoms from silicon substrates. And by adjusting the carbonization conditions, void-free 3C-SiC films were obtained. XPS results demonstrated that the prepared 3C-SiC films were corresponding with the stoichiometric ratio.  相似文献   

11.
用三苯二醚四酸二酐 (HQDPA)或二苯酮四酸二酐 (BTDA)与二氨基二苯甲烷 (MDA)缩聚合成出聚酰胺酸溶液 ,将此溶液与过渡金属有机络合物共混 ,再经热亚胺化即可制备出一类新型的气体膜分离用过渡金属有机络合物 聚酰亚胺杂化材料 .对所得杂化材料的各项性能进行了研究 ,结果表明 ,制得的杂化材料保持了聚酰亚胺良好的力学性能、耐热性能和耐溶剂性能 .用广角X 射线衍射和液体天平对所得材料的结构进行了表征 ,结果表明 ,过渡金属有机络合物的加入能够增加聚酰亚胺材料的分子链间距 .因此 ,与相应的聚酰亚胺相比 ,杂化材料的透气系数增大而透气选择性变化不大 .  相似文献   

12.
Polyimide/polyimide molecular composite (MC) films comprised of a rigid polyimide derived from biphenyltetracarboxylic dianhydride (BPDA) and p-phenylenediamine (PDA) and a flexible polyimide derived from BPDA and bis (3,3'-diaminodiphenyl) acetylene (intA) and/or oxydianiline (ODA) were prepared by blending the polyamic acid solutions in 7 : 3 weight ratio, and then imidizing the blend films. Acetylene content in the flexible polyimide backbone was controlled by the ratio of intA and ODA. Cold-drawing of the blend polyamic acid films, followed by imidization, gives high modulus polyimide/polyimide MC films. The modulus of the MC films increased almost linearly with the draw ratio, reaching 25.5 GPa for the 40% drawn film. Acetylene groups in the flexible polyimide can be thermally cured to crosslink. The onset of exotherm appeared at 340°C on DSC, reaching maximum at 398°C. After the thermal crosslinking, the MC films maintained the high modulus, though elongation became small. Taking advantage of the crosslinkable acetylene units, two MC films were laminated and processed at 400°C for 20 min under 100 kg/cm2 to give a good-quality laminate film. The interface of the two films was strongly bonded through the crosslinking of acetylene groups. Laminate films maintained the high modulus afforded by the cold-drawing. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
During exposure on the Mir space station, external polyimide films aluminized on one side substantially lost mass and mechanical strength and their outer surfaces became hydrophilic. The surface tension and polar plots of brightness of the exposed films acquired an anisotropic character. Spatially-oriented nano- and microsized entities, whose size and shape depend on the time of exposure, were detected by the scanning electron and atomic-force microscopy techniques on the outer surfaces of external films. The orientation axes of drops on the surface of the films, polar plots of brightness, and spatially oriented structures coincided with the direction of the station movement. It was assumed that one of the main factors of outer space responsible for mass loss and the formation of the anisotropic nano- and microsized structures is the impact of a flux of oxygen atoms onto the surface of the external film. The efficiency of the reaction of atomic oxygen with polyimides was estimated. A possible (photoelectron) mechanism of the influence of the metal on polyimide degradation is discussed.  相似文献   

14.
High-temperature polyimide films with metallic gold surfaces can be fabricated by the incorporation of a soluble metal salt into a solution of polyamic acid. Thermal treatment of these solutions produces the polyimide, decomposes the metal salt to metallic gold, and promotes the formation and growth of the metallized surface. What appeared to be a continuous metallic surface was actually composed of large gold aggregates. It is suspected that the formation of colloidal gold during the initial thermal treatment provides precursors to the large metal aggregates. Thermal treatment has been shown to influence the size and distribution of the aggregates. The shape of the aggregates suggests that diffusion-limited aggregation may be responsible for the unique shape of some of the gold aggregates.  相似文献   

15.
A diamine monomer 4,4′-methylenedianiline(MDA) was introduced to modify the polyimide of pyromellitic dianhydride(PMDA) and 4,4′-oxydianiline(ODA) by polycondensation. A series of polyamic acids was synthesized from MDA and ODA of different molar ratios with PMDA of sum mole of moles of MDA and ODA, and polyimide films were obtained by thermal imidization. Polyimide(PI) films were characterized by tensile testing, dynamic mechanical analysis(DMA), thermal gravimetry analysis(TGA), Fourier transform infrared spectroscopy (FTIR), wide X-ray diffraction(WAXD) and molecular simulation. With the increase of MDA content, the tensile strength and thermal decomposition temperature remained generally stable compared with those of PMDA/ODA polyimide. Unexpectedly, the glass transition temperature(Tg) and Young’s modulus increased from 388.7 ℃ and 2.37 GPa to 408.3 ℃ and 5.74 GPa, respectively. The results of WAXD and molecular simulation indicate the steric hindrance among hydrogen atoms of the linkage groups and adjacent phenyls enhanced the properties of the polyimide modified with MDA.  相似文献   

16.
In this work, the influence of atmospheric-pressure CHF(3)/Ar plasma treatment on surface dielectric properties of polyimide films was investigated using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle measurements. The dielectric characteristics of the films were studied using a dielectric spectrometer. From the results, it was found that the plasma treatment introduced fluorine functional groups onto the polyimide surfaces. F 1s/C 1s ratios of the polyimides were enhanced with the increase of plasma treatment time. Consequently, the fluorine groups led to a decrease of the surface free energy and dielectric constant of the polyimide films, which can largely be attributed to the decrease of the deformation polarizability or London dispersive component of surface free energy of the solid surface studied.  相似文献   

17.
In this work, the effects of fluorination of polyimide thin films on surface and dielectric characteristics were studied using X-ray photoelectron spectroscopy (XPS) and dielectric spectrometry, respectively. The thermal and mechanical properties of the film were characterized by thermogravimetric analysis (TGA) and tensile strengths, respectively. The fluorine content of the polyimide thin film was increased with increasing treatment concentration, resulting in decreasing dielectric constant of the film. It was found that the replacement of fluorine led to the decrease of the local electronic polarizability of polyimide, or to the increase of the free volume, which can be attributed to the relatively large size of fluorine. Nevertheless, the fluorination did not significantly affect thermal or mechanical properties of the polyimide film under mild conditions in this system.  相似文献   

18.
The homogeneous alignment of a liquid crystal material, 4'-n-octyl-4-cyanobiphenyl (8CB), was achieved by polyimide Langmuir-Blodgett (LB) films. Scanning electron microscopy and scanning tunnelling microscopy measurements show that the alignment of the polyimide LB films with a grooveless surface occurs due to the orientation of the polyimide chains. We directly observe 8CB monolayers on oriented polyimide LB films. We find that the monolayers form a two dimensional crystalline structure and the 8CB molecules are always aligned along the chain direction of the polyimide. The results show that the alignment of 8CB molecules arises by an epitaxial growth on the oriented polyimide LB films.  相似文献   

19.
The formation of metallized polyimide films in situ, namely, the alkaline hydrolysis of film surfaces, chelation of the modified surface with metal ions, and their chemical reduction giving rise to a metal layer, has been investigated. Initial polyimide films are cast from reaction solutions on a glass substrate. The solutions are prepared through the polycondensation of dianhydride of tricyclo[4.2.2.02.5dec-7-ene-3,4,9,10-tetracarboxylic acid and 4,41-diaminodiphenyl oxide in N-methyl-2-pyrrolidone at 160°C. It has been shown that alkaline water-alcohol solutions are optimal media for the hydrolysis of the film surface. The maximal exchange of alkali metal ions is achieved through formation of a more stable metal-ligand complex of poly(amido acid), with the chelation rate depending on the nature of a metal. The metal reduction proceeds rapidly; however, the mechanism of this process depends on the pH of a medium. The annealing of metallized films results in the imidization of poly(amido acid) and in the growth of metal grains on the material surface to yield a metal layer with good optical properties and high conductivity.  相似文献   

20.
Following previous work, a fluorinated polyimide with a rod‐like structure has been investigated as an in‐plane birefringent optical material whose birefringence and thickness can be precisely controlled. Poly(amic acid) films fixed in a metal frame by two sides and thermally cured without any drawing resulted in a polyimide film with an in‐plane birefringence (Δn) larger than 0.1 at 1543 nm. The optical retardation, which is defined as the product of Δn and the film thickness, was controlled by varying the curing and post‐annealing temperatures and by using reactive ion etching. In situ measurements of the tensile stress and the generated retardation showed that the initial orientation at below 200°C was due to the large tensile stress caused by the film shrinkage during imidization and that the increased Δn at higher temperatures was caused by the spontaneous orientation of the polyimide molecules. The curing temperature dependence of refractive indices, optical transmittance in the visible and near‐infrared region, and the wavelength dispersion of retardation of the in‐plane birefringent polyimide films are also reported. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号