首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article aims to address the problems associated with the encapsulation of oxirane ring containing compounds in poly(urea-formaldehyde) (PUF) shell for application in self-healing composite systems. The main objectives were to produce non-agglomerated, stable microcapsules, and to control the pH drop during the encapsulation via oil-in-water emulsion polymerization. In the modified method; two stage additions of urea and formaldehyde monomers, core to shell ratio, weight percent and combination of two surfactants/emulsifiers were altered to produce the desired product. Analysis was done with optical microscope (OM), scanning electron microscopy (SEM), FTIR, particle size analyzer, and thermogravimetric analysis (TGA). The pH drop was confirmed by using a common epoxy resin, an epoxy functionalized polydimethylsiloxane (E-PDMS), and epoxidized palm oil (EPO) as cores. The modified oil-in-water emulsion polymerization of PUF was effective in preventing the pH drop during the encapsulation and a product stable for more than 3 months with less agglomeration was produced. The method produced microcapsules having diameters less than 100 μm at lower agitation rates. The modified method is only applicable to epoxy resin and not for compounds like amine hardeners. The use of stable microcapsules in self-healing coatings can lead towards cost reduction implied for repair and maintenance purposes.  相似文献   

2.
Low molecular weight epoxy resin based on bis (4‐hydroxy phenyl) 1,1 cyclohexane was prepared and modified with various types of the prepared phenolic resins. Phenol–, cresol–, resorcinol–and salicylic acid–formaldehyde resins were used. The optimum conditions of formulation and curing process were studied to obtain modified wood adhesives characterized by high tensile shear strength values. This study indicated that the more suitable conditions are 1:2 weight ratio of phenol–or cresol–formaldehyde to epoxy resin in the presence of phthalic anhydride (20 wt%) of the resin content as a curing agent at 150°C for 80 min. Resorcinol–or salicylic acid–formaldehyde/epoxy resins formulated at 1:2 weight ratio were cured in the presence of paraformaldehyde (20 wt%) at 150°C for 60 min. The effect of the structure of phenolic resins on the tensile shear strength values of formulated resin samples, when mixed with the epoxy resins and cured under the previously mentioned optimum conditions for different times, was investigated. Metallic and glass coatings from the previous resins were also prepared and evaluated as varnishes or paints. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

3.
The present work aims to modify conventional epoxy resin by blending with four different phenolic–urea oligomers. These oligomers are similar to phenolic–urea resin matrix and simultaneously function as amino curing agent for epoxy matrix. In this context, phenolic–urea oligomers were prepared respectively by polycondensation reaction of four phenols namely phenol, m-cresol, resorcinol and 1,5-dihydroxy naphthalene, respectively with formaldehyde and urea in presence of acid catalyst. The resulting oligomers were characterized by elemental analysis, spectral studies (IR & NMR), number average molecular weight (M¯n) estimated by non-aqueous conductometric titration and thermal stability by thermogravimetric analysis (TGA). Each of these oligomers was used in resin matrix as a blending component for the modification of commercial epoxy resin for fabricating glass fiber reinforced laminates. Finally these laminates were evaluated for their synergetic thermal stability, mechanical properties and chemical resistance to different reagents.  相似文献   

4.
Composite of conductive polyaniline-isobutylated urea formaldehyde have been prepared by chemical oxidative emulsion polymerization of aniline in the presence of isobutylated urea formaldehyde resin (BUFR) in toluene-water solvents at room temperature. The mass loading of polyaniline was controlled by varying the BUFR/aniline charging ratio as well as oxidant (ammonium persulfate)/aniline molar ratio. Some factors capable of affecting the yield and conductivity of composite, such as amount of the oxidant, type of the dispersants (span-80 and span-20), and amount of resin and organic acid (para-toluene sulfonic acid) were investigated. The prepared composites were characterized by FTIR spectroscopy and scanning electron microscopy (SEM).  相似文献   

5.
The thermomechanical properties of octafunctional cubic silsesquioxane‐modified epoxy resins associated with dicycloaliphatic hardener (4,4′‐dimethyldiaminodicyclo hexyl methane) were studied using thermogravimetric analysis, differential scanning calorimetry, and dynamic mechanical analysis. The structures of epoxy resin containing cubic silsesquioxane epoxides were characterized by Fourier transform infrared spectroscopy and wide‐angle X‐ray scattering techniques. In this work, octa(dimethylsiloxybutylepoxide) octasilsesquioxane (OB), and octa(glycidyldimethyl‐siloxyepoxide) octasilsesquioxane (OG), were synthesized and used as additives to improve the properties of a commercial epoxy resin by exploring the effects of varying the ratio of OB or OG. The commercial Ciba epoxy resin (Araldite LY5210/HY2954) was used as a standard. It was found, by thermogravimetric analysis and dynamic mechanical analysis, that the highest thermal stability was observed at N = 0.5 (N = number of amine groups/number of epoxy rings). No glass transition temperature was observed by adding 20 mol % OB to the Ciba epoxy resin, indicating the reduction of chain motion in the presence of octafunctional cubic silsesquioxane epoxide. The storage modulus of the OB‐modified epoxy resin also increased, especially at higher temperatures, compared with the Ciba epoxy resin under identical curing conditions. Fourier transform infrared data elucidated the preservation of cubic silsesquioxane structure after curing at high temperature. In contrast, the OG/Araldite LY5210/HY2954 systems gave poorer thermomechanical properties. The low viscosity of OB at room temperature (~ 350 cPs) makes it suitable for composite processing and, when used in conjunction with the Ciba epoxy, lowers the viscosity of this system as well. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3490–3503, 2004  相似文献   

6.
制备了具有环氧丙基侧链的对位芳纶(PPTA-ECH)和间位芳纶(PMIA-ECH),并将其用做对位芳纶(PPTA)织物/环氧树脂复合材料中PPTA织物的涂覆剂。采用场发射扫描电子显微镜(FE-SEM)及XPS等方法对PPTA织物表面的PPTA-ECH涂层结构进行了表征。考察了PPTA-ECH和PMIA-ECH涂覆的PPTA织物/环氧树脂复合材料的层间剪切强度和面内剪切强度,并与未经涂覆的PPTA织物复合材料的性能作比较。结果表明,PPTA-ECH和PMIA-ECH可显著改善PPTA织物和环氧树脂之间的界面性能。涂覆了PPTA-ECH及PMIA-ECH的PPTA织物/环氧树脂复合材料的层间剪切强度(ILSS)比未经涂覆的复合材料分别提高了26.20%和14.76%,面内剪切强度(ISS)分别提高了26.98%和11.86%。由于PPTA-ECH对PPTA纤维具有更强的亲和能力,因此PPTA-ECH在层间剪切强度和面内剪切强度方面的增强效果均优于PMIA-ECH。对PPTA-ECH在PPTA纤维表面铺展与吸附及对复合材料的增强机理也进行了初步探讨。作为新型涂覆剂,PPTA-ECH在对位芳纶复合材料的开发应用方面具有潜在的应用前景。  相似文献   

7.
Flaky Ni/Ni-Cu-coated glass fiber/epoxy resin composite coatings were prepared using the glass fibers and flaky nickel powders as fillers and epoxy resin as binder. The conductivity and electromagnetic shielding effectiveness of the coatings are as follows: (1) the appropriate content of Ni-Cu-coated glass fibers is 6 wt % in the composite filler and the optimum ratio of the filler to epoxy resin is 4: 1; (2) electrical conductivity of the coating with a thickness of 300 μm has a minimum value of 0.72 Ω cm; (3) shielding effectiveness of the coatings is up to 50.21–55.43 dB in the frequency range of 0.3–1000 MHz. This offers a new idea to enhance the added value of the glass fibers and raise the level of electromagnetic radiation protection.  相似文献   

8.
通过调控甲醛与尿素摩尔比, 降低脲醛树脂胶黏剂中游离甲醛的含量, 以生物质玉米芯为原材料, 用碱液提取得到的碱木质素溶液与甲醛和尿素进行三元逐步共聚, 弥补降低醛脲比带来的胶合强度的快速下降问题. 以降低游离甲醛含量同时兼顾胶合强度为原则进行探索, 得到最佳实验条件为甲醛与尿素摩尔比(F/U)为0.91∶1, 木质素添加量为20%(质量分数), 在此条件下木质素-尿素-甲醛共聚树脂(LUF)胶合强度为0.99 MPa, 游离甲醛含量为0.26%. 对共聚树脂进行了结构表征, 表明木质素参与到反应中, 并能提高树脂的热稳定性和耐水性, 同时对反应的机理进行了讨论.  相似文献   

9.
Two kinds of micro/nano sized fibrils based on cellulose (MFC) and polyvinyl alcohol (PVA) were used as reinforcer for epoxy resin (EP) with different contents in the range from 0 to 0.3 wt %. PVA nanofibers with diameter about 40–80 nm were fabricated by electrospinning technique. The analysis of mechanical properties showed that by both adding MFC and PVA to EP the fracture toughness was increased. The SEM results showed that micro/nano sized fibers dispersed throughout epoxy resin, prevented and changed the path of crack growth.  相似文献   

10.

In the present study, TEIA bioresin was blended with the diglycidyl ether bisphenol A (DGEBA) epoxy resin in different ratios (i.e. 10, 20, 30, 40 mass%), cured with methylhexahydrophthalic anhydride curing agent in the presence of 2-methylimidazole catalyst. The optimized composition of DGEBA and TEIA bioresin blends system was employed as an adhesive strength. The adhesive strength of the TEIA-modified DGEBA epoxy resin blend system was increased from 4.14 to 6.31 MPa on an aluminium substrate compared to the DGEBA epoxy resin. The curing kinetics of non-isothermal, DGEBA epoxy resin and its bio-based blend systems were investigated employing differential scanning calorimetry. An increase in the peak temperature and reduction in a heat of curing as well as activation energy in DGEBA epoxy resin were observed with the addition of TEIA bioresin content. The activation energy (Ea) of the DGEBA resin and their bio-based blend system were obtained from Kissinger and Flynn–Wall–Ozawa methods.

  相似文献   

11.
Multi‐walled carbon nanotubes (MWCNTs) were acidified with nitration mixture, and the Fe2O3‐MWCNTs (iron oxide coated multi‐walled carbon nanotubes) hybrid material via sol‐gel method then verified the results through scanning electron microscope, X‐ray diffraction, and thermal gravimetric analysis. We modified the hybrid material with silane coupling agent (KH560), Fe2O3‐MWCNTs/epoxy, MWCNTs/epoxy composites coating, and the pure epoxy coatings were respectively prepared. The properties of the composite coatings were tested through the electrochemical workstation (electrochemical impedance spectroscopy), shock experiments, and thermal gravimetric analysis. Finally, we used scanning electron microscope to observe the surface conditions of the coatings. The results show that Fe2O3‐MWCNTs have good dispersion in the epoxy resin, and the Fe2O3‐MWCNTs/epoxy composite coatings have enhanced mechanical properties and corrosion resistance. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
利用环氧树脂(EP)对碳酸氢钠(SB)进行包覆合成微胶囊碳酸氢钠,通过红外光谱仪(FTIR)、扫描电子显微镜(SEM)、差示扫描量热计(DSC)和热重分析仪(TG)等表征手段,分析了合成反应温度、环氧树脂与碳酸氢钠的质量比对微胶囊碳酸氢钠的结构、表面形貌特征以及热分解特性的影响.结果表明:当反应温度为70℃,环氧树脂与...  相似文献   

13.
In this paper we propose an approach for ranking self-healing polymeric coatings containing micro/nanocapsules in order of corrosion-protection effectiveness on exposure to 3.5 % (w/w) NaCl solution. The results indicated that development of electrochemical cells was inhibited by the active components of the ruptured embedded inhibitor micro/nanocapsules which were released into a scratch inflicted in the polymeric coating on steel surface. Undamaged surface film of test and control specimens exposed to the solution had excellent corrosion-inhibition performance, as reflected by results from both electrochemical impedance spectroscopy and polarization tests. Moreover, three coatings containing capsules synthesized at three different agitation rates with the same thickness were compared to determine the optimum rate. For the optimum rate the optimum thickness was then determined. The areas under Bode plots were determined and used as useful values for evaluation and ranking the coatings. It was found that the area under the Bode plot is a good criterion for evaluating polymeric coating degradation during immersion. There was good agreement between the results of this work and those from electrochemical tests.  相似文献   

14.
In this study, the curing kinetics of epoxy nanocomposites containing ultra-fine full-vulcanized acrylonitrile butadiene rubber nanoparticles (UFNBRP) at different concentrations of 0, 0.5, 1 and 1.5 wt.% was investigated. In addition, the effect of curing temperatures was studied based on the rheological method under isothermal conditions. The epoxy resin/UFNBRP nanocomposites were characterized via Fourier transform infrared spectroscopy (FTIR). FTIR analysis exhibited the successful preparation of epoxy resin/UFNBRP, due to the existence of the UFNBRP characteristic peaks in the final product spectrum. The morphological structure of the epoxy resin/UFNBRP nanocomposites was investigated by both field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) studies. The FESEM and TEM studies showed UFNBRP had a spherical structure and was well dispersed in epoxy resin. The chemorheological analysis showed that due to the interactions between UFNBRP and epoxy resin, by increasing UFNBRP concentration at a constant temperature (65, 70 and 75 °C), the curing rate decreases at the gel point. Furthermore, both the curing kinetics modeling and chemorheological analysis demonstrated that the incorporation of 0.5% UFNBRP in epoxy resin matrix reduces the activation energy. The curing kinetic of epoxy resin/UFNBRP nanocomposite was best fitted with the Sestak–Berggren autocatalytic model.  相似文献   

15.
Epoxy compositions based on low-molecular bisphenol A type resin and deep eutectic solvents from choline chloride (ChCl) and guanidine derivatives or urea were prepared and investigated. Pot life at room temperature and curing process at dynamic mode were studied using DSC and rheometry while DES basic ratio was changed in a range of 3–9 wt. part/100 wt. part of epoxy resin (phr). Thermomechanical properties (glass transition and tan δ) of the cured epoxy materials (DES content up to 20 phr) using DMTA and their thermal resistance on the basis of thermogravimetric measurements were evaluated. The curing mechanism, i.e., ratio of polyaddition reaction to catalytic polymerization, was evaluated considering changeable guanidine derivative content in relation to epoxy resin.  相似文献   

16.
Dynamic mechanical analysis was conducted on specimens prepared from cyanate ester (CE) and epoxy (EP) resins cured together at various mass compositions. Increase of amount of epoxy resin in composition was shown to have a disadvantageous effect on glass transition temperature (T g). It was shown that post-curing procedure was needed to produce a polymer matrix with a single glass transition relaxation, but increase in post-cure temperature up to 250 °C resulted in slight reduction in T g for epoxy/cyanate copolymers. TG results proved that the presence of epoxy resin reduces thermal stability of the cyanate/epoxy materials. The neat CE and EP/CE systems containing 30 wt% of epoxy resin were modified using epoxy-terminated butadiene–acrylonitrile rubber (ETBN) and polysiloxane core–shell elastomer (PS). The scanning electron microscopy (SEM) results showed the existence of second phase of ETBN and PS modifiers. Only in the case of EP/CE composition modified with ETBN, well-dispersed second phase domains were observed. Analysis of SEM images for other CE- and EP/CE-modified systems revealed the formation of spherical aggregates.  相似文献   

17.
Thermosetting blends of an aliphatic epoxy resin and a hydroxyl‐functionalized hyperbranched polymer (HBP), aliphatic hyperbranched polyester Boltorn H40, were prepared using 4,4′‐diaminodiphenylmethane (DDM) as the curing agent. The phase behavior and morphology of the DDM‐cured epoxy/HBP blends with HBP content up to 40 wt % were investigated by differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and scanning electron microscopy (SEM). The cured epoxy/HBP blends are immiscible and exhibit two separate glass transitions, as revealed by DMA. The SEM observation showed that there exist two phases in the cured blends, which is an epoxy‐rich phase and an HBP‐rich phase, which is responsible for the two separate glass transitions. The phase morphology was observed to be dependent on the blend composition. For the blends with HBP content up to 10 wt %, discrete HBP domains are dispersed in the continuous cured epoxy matrix, whereas the cured blend with 40 wt % HBP exhibits a combined morphology of connected globules and bicontinuous phase structure. Porous epoxy thermosets with continuous open structures on the order of 100–300 nm were formed after the HBP‐rich phase was extracted with solvent from the cured blend with 40 wt % HBP. The DSC study showed that the curing rate is not obviously affected in the epoxy/HBP blends with HBP content up to 40 wt %. The activation energy values obtained are not remarkably changed in the blends; the addition of HBP to epoxy resin thus does not change the mechanism of cure reaction of epoxy resin with DDM. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 889–899, 2006  相似文献   

18.
自由体积与亲水性对环氧涂层防护性能的影响   总被引:5,自引:1,他引:5  
报道了涂层聚合物自由体积和亲水性对涂层腐蚀防护性能影响的初步研究结果.实验表明,相对于自由体积,树脂的亲水性是决定树脂吸水率的更主要因素.低亲水性涂层腐蚀防护性能的提高主要源自到达涂层/金属界面的水量的显著降低.但由于采用活性酯固化的环氧树脂涂层中水通道的尺寸相对较大,水合离子扩散较容易,因此该类涂层覆盖下的金属基体被润湿部分的腐蚀趋势反而较一般涂层为大.  相似文献   

19.
In the present study, maleimide‐modified epoxide resin containing UV‐curable hybrid coating materials were prepared and coated on polycarbonate substrates in order to improve their surface properties. UV‐curable, bismaleimide‐modified aliphatic epoxy resin was prepared from N‐(p‐carboxyphenyl) maleimide (p‐CPMI) and cycloaliphatic epoxy (Cyracure‐6107) resin. The structure of the bismaleimide modified aliphatic epoxy resin was analyzed by FTIR and the characteristic absorption band for maleimide ring was clearly observed at 3100 cm?1. Silica sol was prepared from tetraethylorthosilicate (TEOS) and methacryloxy propyl trimethoxysilane (MAPTMS) by sol–gel method. The coating formulations with different compositions were prepared from UV‐curable bismaleimide‐based epoxy oligomer and sol–gel mixture. The molecular structure of the hybrid coating material was analyzed by 29Si‐CP/MAS NMR spectroscopy techniques. In the 29Si CP/MAS NMR spectrum of the hybrid coating, mainly two kinds of signals were observed at ?68 and ?110 ppm that correspond to T3 and Q4 peaks, respectively. This result shows that a fully condensed structure was obtained. The thermal and morphological properties of these coatings materials were investigated by using TGA and SEM techniques. Hardness and abrasion resistance properties of coating materials were examined and both were found to increase with sol–gel precursor content of the coating. The photopolymerization kinetics was investigated by using RT‐IR. 70% conversion was attained with the addition of 15 wt% of BMI resin into the acrylate‐based coating formulation. It was found that the UV‐curable organic–inorganic hybrid coatings improved the surface properties of polycarbonate. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, an experimental phenol–formaldehyde resin with 20% phenol replacement by cashew nut shell liquid (CNSL) was studied and compared with a conventional phenol–formaldehyde resin synthesized totally from petrochemical raw materials. The resins were characterized with standard lab analysis for their physicochemical specifications, while their thermal properties were studied with thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). For comparison reasons pure CNSL and wood were also included in the TGA study. A DSC study conducted both for the neat resins and the system wood–resin as to examine the effect of wood on the curing performance of the resins in the real time conditions of their usage at the wood-based panels industry.The adhesion strength of these resins was investigated by their application in plywood production. The plywood panels were tested for their shear strength and wood failure performance while their free formaldehyde emissions were determined with the desiccator method. It was proved that although the neat CNSL modified PF resin (PCF) cures at longer time and higher temperature than a conventional PF resin, wood affects it more significantly, resulting in the evening of their curing performance. This is a novel finding that manifests the possibility of replacing a convention PF resin by a CNSL modified one in the plywood production, without changing any of their production conditions and with improvement to their overall properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号