首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Possibility of obtaining gold nanoparticles in interaction of HAuCl4·4H2O with ED-20 epoxy oligomer under heating was examined. Conditions for control over the size of Au nanoparticles in the course of their formation are suggested.  相似文献   

2.
The mechanical and thermomechanical properties of metal-containing epoxy composite films based on silver nanoparticles synthesized in situ are investigated. There is a nonmonotonic dependence of the mechanical properties on the concentration of silver myristate used as a precursor. It is found for the first time that the breaking strength and elastic modulus increase by a factor of 1.8–1.5 relative to those of the unmodified matrix at a small concentration of precursor nanoparticles (on the order of 0.1 wt %). DSC and thermomechanical studies reveal that the glass-transition temperature decreases slightly (by 5–6°C) as the precursor concentration is increased to 0.5 wt %, thereby suggesting a weak plasticization of the modified epoxy matrix. On the basis of the spectrophotometry data measured in the region of surface plasmon resonance of silver nanoparticles (420–425 nm) and SEM data, it is inferred that the in situ strengthening of an epoxy nanocomposite based on epoxy resin ED-20, triethylamine, and silver myristate is attained because silver nanoparticles smaller than 20 nm in size and having a narrow particle-size distribution are formed during curing.  相似文献   

3.
The kinetics and mechanism of the formation of silver nanoparticles by reduction of Ag+ with maltose were studied spectrophotometrically by monitoring the absorbance change at 412 nm in aqueous and micellar media at a temperature range 45–60 °C. The reaction was carried out under pseudo-first-order conditions by taking the [maltose] (>tenfold) the [Ag+]. A mechanism of the reaction between silver ion and maltose is proposed, and the rate equation derived from the mechanism was consistent with the experimental rate law. The effect of surfactants, namely cetyltrimethylammonium bromide (CTAB, a cationic surfactant) and sodium dodecyl sulfate (SDS, an anionic surfactant), on the reaction rate has been studied. The enthalpy and the entropy of the activation were calculated using the transition state theory equation. The particle size of silver sols was characterized by transmission electron microscopy and some physiochemical and spectroscopic tools.  相似文献   

4.
The kinetics of metal filling of ED-20 epoxy oligomer by its action on AgNO3 in the temperature interval 50–90°C was studied.  相似文献   

5.
Kinetics of curing of structurally different epoxy oligomers (ED-20 and PDI-3AK resins) in a mixture with other low-molecular-weight epoxy oligomers and plasticizers by the eutectic mixture of aromatic amines UP-0638/1 is studied by the DSC method. The activation energy and the heats of curing reactions are determined. It is established that crosslinked epoxy polymers cured at moderate temperatures (40–80°C) are strong moisture-resistant compositions with different mechanical characteristics. Plasicized elastomers based on PDI-3AK resin with glass transition temperatures of ?78 and ?95°C are freeze-and heat-resistant materials.  相似文献   

6.
Interactions between colloidal copper and silver ions lead to the formation of silver nanoparticles. The reaction proceeds through the intermediate stage of the formation of a copper-silver contact pair. The formation of bimetallic AgcoreCushell nanoparticles is observed in the presence of the “seeding” silver nanoparticles and upon the simultaneous radiochemical reduction of Ag+ and Cu2+ ions.  相似文献   

7.
We have studied the formation of networks on the basis of an epoxy resin called ED-20, the same resin modified with tert -butylhydroperoxide (called ED-20P), unsaturated oligoesters and polyethylenepolyamine in the presence of acrylates and methacrylates at 20°C, 100°C and 130°C. The gel-fraction contents in the blends and the pendulum damping hardness of films made from the blends have been determined. The progress of gelation has been related to the composition, time and crosslinking temperature. The presence of peroxide groups enhances the extent of gelation. When those groups are present, acrylates and methacrylates provide still higher values of the ultimate gel fractions, acting as diluents (lowering viscosity of the initial blends) and simultaneously as crosslinking agents. The pedulum damping hardness tests for organic films performed as a function of time provide results parallel to those obtained by the gel fraction determination via Soxhlett extraction with acetone. Thus, both methods can be used to pursue the progress of gelation.  相似文献   

8.
Silver nanoparticles were formed in situ along with poly(2,5‐dimethoxyaniline) (PDMA) in an interconnected network matrix (reactor), comprising the electronic conductive polymer, PDMA, and a polyelectrolyte, poly(styrene sulfonic acid) (PSS), through the simultaneous reduction of Ag+ ions and polymerization of 2,5‐dimethoxyaniline. In situ ultraviolet‐visible spectroscopy showed that peaks corresponding to the plasmon resonance of silver nanoparticles at 411 nm and the polaronic transition of PDMA at 438 nm provided evidences for the simultaneous formation of silver nanoparticles and PDMA. Transmission electron microscopy and size distribution analysis revealed the presence of spherical silver nanoparticles with an average diameter of 12 nm in the composite. X‐ray photoelectron spectroscopy showed that the amine units in PDMA changed to imine units upon the formation of silver nanoparticles. A comprehensive mechanism for the formation of the PDMA‐PSS‐Ag nanocomposite is proposed. A 10‐fold increase in the conductivity was noticed for the PDMA–PSS–Ag nanocomposite (1 S/cm) in comparison with the PDMA–PSS composite (0.1 S/cm). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3843–3852, 2006  相似文献   

9.
Silver nanoparticles are prepared by reducing Ag+ ions with sodium borohydride in aqueous solutions containing carbonate ions (5 × 10−5−1 × 10−2 mol l−1). It is established that carbonate ions represent an efficient stabilizer that provides nanoparticles with electrostatic protection via the formation of an electrical double layer. The maximum stability of a silver dispersion is observed at a carbonate ion concentration of 1 × 10−3 mol l−1. The average size of silver nanoparticles is 10.0 ± 2.5 nm. The formation kinetics of silver nanoparticles is described by an equation for a first-order reaction with a rate constant of 2.3 × 10−3 s−1 (±20%).  相似文献   

10.
Stable silver particles of 39 nm in diameter were synthesized by the thermal implantation of its ions in ED-20 epoxy oligomer.  相似文献   

11.
The formation of nanoparticles of metallic silver in the reduction of Ag+ ions catalyzed by colloidal Ag2S was investigated. It was established that the position of the surface plasmon resonance bands of the Ag nanoparticles is affected by the concentration of the catalyst, its particle size and the amount of particles with the same size, the stabilization conditions, the concentration of Ag+ ions, and the temperature at which the process is conducted. An explanation for the spectral changes that occur is proposed.  相似文献   

12.
In this study, silver nanoparticles (Ag-NPs) have been synthesized using extract of Chelidonium majus root in aqueous solution at room temperature. The root extract was able to reduce Ag+ to Ag0 and stabilized the nanoparticles Different physico-chemical techniques including UV–Vis spectroscopy, transmission electron microscopy and powder X-ray diffraction (PXRD) were used for the characterization of the biosynthesized Ag-NPs obtained. The surface plasmon resonance band appeared at 431 nm is an evidence for formation of Ag-NPs. TEM imaging revealed that the synthesized Ag-NPs have an average diameter of around 15 nm and with spherical shape. Moreover the crystalline structure of synthesized nanoparticles was confirmed using XRD pattern. Furthermore antimicrobial activities of synthesized Ag-NPs were evaluated against Escherichia coli -ATCC 25922 and Pseudomonas aeruginosa ATCC 2785 bacteria strain.  相似文献   

13.
The capability of aqueous starch solution for reduction of Ag+ ions and stabilization of metallic silver nanoparticles was examined. Kinetic parameters of formation of Ag nanoparticles were determined.  相似文献   

14.
Long-lived (hours to days) silver clusters, Ag 4 2+ , Ag 4 + , Ag 8 2+ , etc., are formed upon the radiation-induced reduction of Ag+ ions in aqueous solutions containing sodium polyphosphate. The efficiency of the cluster formation decreases and the stability of the clusters increase with a rise in the concentration of the polymeric stabilizer. In the course of the aggregation of clusters, their sizes increase, quasi-metallic particles emerge, and the process terminates with the formation of silver nanoparticles. The mechanism of silver nucleation upon the radiation-induced reduction of silver ions in aqueous solutions is discussed.  相似文献   

15.
Silver oxalate Ag2C2O4, was already proposed for soldering applications, due to the formation when it is decomposed by a heat treatment, of highly sinterable silver nanoparticles. When slowly decomposed at low temperature (125 °C), the oxalate leads however to silver nanoparticles isolated from each other. As soon as these nanoparticles are formed, the magnetic susceptibility at room temperature increases from −3.14 10−7 emu.Oe−1.g−1 (silver oxalate) up to −1.92 10−7 emu.Oe−1.g−1 (metallic silver). At the end of the oxalate decomposition, the conventional diamagnetic behaviour of bulk silver, is observed from room temperature to 80 K. A diamagnetic-paramagnetic transition is however revealed below 80 K leading at 2 K, to silver nanoparticles with a positive magnetic susceptibility. This original behaviour, compared to the one of bulk silver, can be ascribed to the nanometric size of the metallic particles.  相似文献   

16.
Agx Pt100−x (x  = 0, 25, 50, 75 and 100) nanoparticles were grown on the surface of magnetic graphene oxide nanosheets (Fe3O4@GO) for the first time. The as‐prepared nanocomposites were characterized using various techniques such as Fourier transform infrared spectroscopy, powder X‐ray diffraction, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy, Brunauer–Emmett–Teller surface area analysis, vibrating sample magnetometry and thermogravimetric analysis. The Fe3O4@GO‐Agx Pt100−x catalysts were applied in the reduction of 4‐nitrophenol (4‐NP) to 4‐aminophenol using sodium borohydride (NaBH4). The synthesized nanocomposites exhibited excellent catalytic performance in the reduction of 4‐NP with high recyclability for five consecutive runs. The Fe3O4@GO‐Ag75Pt25 nanocomposite exhibited the best catalytic activity with a rate constant as high as 140.6 × 10−3 s−1. The obtained kinetic data were modelled with the Langmuir–Hinshelwood equation. The energy of activation and thermodynamic parameters including enthalpy, entropy of activation and activation Gibbs free energy were calculated.  相似文献   

17.
Conductive silver/silver bromide/polypyrrole nanoparticles were obtained by photopolymerization in o/w microemulsions of pyrrole monomer in the presence of silver nitrate as electron acceptor and dopant under UV light irradiation. The microemulsions were prepared using cetyltrimethylammonium bromide (CTAB) as cationic surfactant. The particles were analyzed by scanning electron microscopy (SEM), UV/Vis, Fourier transform infrared spectroscopy, cyclic voltammetry, and X-ray diffraction (XRD). It was observed from SEM analysis that spherical particles can be obtained by this procedure with relatively narrow particles sizes distributions and average particle diameters of the silver cores (Dp) between 39 and 46 nm, which decreases as the surfactant concentration is increased. The conductivities of the resulting materials were between 0.12 and 0.40 S/m. Formation of cores of Ag and AgBr were observed from the XRD analysis, which was ascribed to the reduction of Ag+ to Ag0 and to reaction of Ag+ with the counterion of CTAB surfactant, respectively.  相似文献   

18.
The specifics of formation of silver nanoparticles in aqueous solution in the presence of carboxyalkylated amine complexones (NTA and DTPA) have been studied for the first time. Sols with these ligands are found to be formed in alkali solutions at рН ≥ 10.0 and 80°С. Their optical spectra and the particle sizes and morphologies are determined by synthesis conditions: рН, the ratio Ag+/L, and the order of mixing components. A scheme has been suggested for silver nanoparticle formation in the presence of NTA and DTPA, consistent with the experimental results. The efficacy of the prepared silver sols in SERS measurements is shown.  相似文献   

19.
Within the problem of the synthesis of silver nanoclusters and nanoparticles in polyether media, systems containing silver nitrate AgNO3 and low-molecular-weight polyethers, poly(ethylene glycol) PEG-400 or oxyethylated glycerol OEG-5, were studied by fast atom bombardment (FAB) mass spectrometry. The formation of stable clusters of polyether oligomers (M m ) with silver cations M m · Ag+ was shown, in agreement with the previous data of laser desorption/ionization. Quantum-chemical DFT calculations have shown that the M m · Ag+ clusters are stabilized by wrapping of the polyether chain around the silver cation with the cation coordinating ether oxygen atoms. Silver nanoclusters were not found in the FAB mass spectra of liquid systems, but Ag n + clusters were detected for silver nanoparticles separated from the reaction medium. No products of chemical transformations of PEG-400 or OEG-5 were observed by FAB. A plausible mechanism of the reduction of silver cations involving nitrate anions is discussed.  相似文献   

20.
Ag9I3(SeO4)2(IO3)2 was obtained for the first time by reacting a stoichiometric mixture of Ag2O, AgI and SeO2 at elevated oxygen pressure (255 MPa) and at a temperature of 500 °C. Ag9I3(SeO4)2(IO3)2 was characterized by X‐ray powder diffraction, differential scanning calorimetry, impedance spectroscopy and single crystal structure analysis. The crystal structure was solved by direct methods (I23, Z = 8, a = 12.9584(6) Å, V = 2175.9(2) Å3 and R1 = 2.70 %). The crystal structure consists of isolated SeO4 tetrahedra and trigonal IO3 pyramids separated by Ag+ and I ions. Each four of the SeO42– and IO3 anions aggregate, forming a novel supramolecular building block, showing a hetero‐cubane like structure. According to the results of impedance measurements, Ag9I3(SeO4)2(IO3)2 is a good silver ion conductor. The compound shows an abrupt increase in the ionic conductivity in the temperature range of 115 to 147 °C, and has a silver ion conductivity of 7.1 × 10–5 Ω–1 cm–1 at 25 °C. The activation energy for silver ion conduction is 0.45 eV, in the temperature range from 25 to 115°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号