首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We use the theory based on a gravitational gauge group (Wu's model) to obtain a spherical symmetric solution of the field equations for the gravitational potential on a Minkowski spacetime. The gauge group, the gauge covariant derivative, the strength tensor of the gauge feld, the gauge invariant Lagrangean with the cosmological constant, the field equations of the gauge potentiaIs with a gravitational energy-momentum tensor as well as with a tensor of the field of a point like source are determined. Finally, a Reissner-Nordstrom-de Sitter-type metric on the gauge group space is obtained.  相似文献   

2.
We use the theory based on the gravitational gauge group G to obtain a spherical symmetric solution of the field equations for the gravitational potentials on a Minkowski space-time. The gauge group G is defined and then we introduce the gauge-covariant derivative Dμ. The strength tensor of the gravitational gauge field is also obtained and a gauge-invariant Lagrangian including the cosmological constant is constructed. A model whose gravitational gauge potentials A^α μ (x) have spherical symmetry, depending only on the radial coordinate τ is considered and an analytical solution of these equations, which induces the Schwarzschild-de-Sitter metric on the gauge group space, is then determined. All the calculations have been performed by GR Tensor II computer algebra package, running on the Maple V platform, along with several routines that we have written for our model.  相似文献   

3.
A canonical formalism of the dynamics of interacting spherically symmetric Yang-Mills and gravitational fields is presented. The work is based on Dirac's technique for constrained hamiltonian systems. The gauge freedom of the Yang-Mills field is treated in the same footing with the coordinate transformation freedom of the gravitational field. In particular, the fixation of coordinates and the fixation of the internal gauge are achieved by totally similar techniques. Two classes of spherically symmetric motions are considered: (i) the class for which the Yang-Mills potentials themselves are spherically symmetric (“manifest spherical symmetry”). In this case the results are valid for an arbitrary gauge group; and (ii) the class for which, in the SO(3) gauge group, a rotation in physical space is compensated by a rotation of equal magnitude but opposite direction in isospin space (“spherical symmetry up to a gauge transformation”). For manifest spherical symmetry the problem amounts to effectively dealing with an abelian gauge group and the most general solution of the field equations turns out to be the Reissner-Nordström metric with a Coulomb field. For spherical symmetry up to a gauge transformation the problem is more interesting. the formalism contains then, besides the gravitational variables, three pairs of functions of the radial coordinate that describe the degrees of freedom of the Yang-Mills field. Two pairs of these functions can be combined into a complex field ψ and its conjugate. The hamiltonian is then invariant under r-dependent rotations in the complex ψ-plane. The third degree of freedom plays the role of a compensating field associated with this invariance under localized U(l) rotations. The compensating field can always be brought to zero by a gauge transformation. After this is done the gauge is completely fixed but the problem remains invariant under position independent rotations in the ψ plane. Static solutions of the field equations in this gauge are of the form ψ(r) = (r) exp (iΘ) with Θ independent of position. The particular case Θ = 0 corresponds to the Wu-Yang ansatz. A nontrivial static solution can be found in closed form. The Yang-Mills field is of the generalized Wu-Yang type with an extra electric term, and the metric is the Reissner-Nordström one. It is pointed out that a Higgs field can be easily introduced in the formalism. The addition of the Higgs field does not destroy the invariance of the Hamiltonian under r-dependent rotations in the ψ-plane. The conserved quantity associated with the invariance under ψ → exp (i(const))ψ coincides with the electric charge as defined by 't Hooft in a more general context.  相似文献   

4.
The spin 3/2 field equation is studied in the general Lema?tre–Tolman–Bondi (LTB) space-time. The equation is separated by variable separation. The angular dependence factors out at the level of the general LTB metric. Due to spherical symmetry the separated angular equations coincide with those, previously integrated, relative to the Robertson–Walker and Schwarzschild metric. Separation of time and radial dependence is possible within a class of LTB cosmological models for which the physical radius is a product of a time and a radial function, the last one being further selected by the consistency condition of the radial equations. The separated time dependence, that can be integrated by series, results essentially unique. Instead the radial dependence can be reduced to two independent second order ordinary differential equations that still depend on an arbitrary radial function that is an integration function of the cosmological model. The generalization of the scheme to arbitrary spin field equation is suggested.  相似文献   

5.
We present a tetrad-based method for solving the Einstein field equations for spherically-symmetric systems and compare it with the widely-used Lemaître–Tolman–Bondi (LTB) model. In particular, we focus on the issues of gauge ambiguity and the use of comoving versus ‘physical’ coordinate systems. We also clarify the correspondences between the two approaches, and illustrate their differences by applying them to the classic examples of the Schwarzschild and Friedmann–Lemaître–Robertson–Walker spacetimes. We demonstrate that the tetrad-based method does not suffer from the gauge freedoms inherent to the LTB model, naturally accommodates non-uniform pressure and has a more transparent physical interpretation. We further apply our tetrad-based method to a generalised form of ‘Swiss cheese’ model, which consists of an interior spherical region surrounded by a spherical shell of vacuum that is embedded in an exterior background universe. In general, we allow the fluid in the interior and exterior regions to support pressure, and do not demand that the interior region be compensated. We pay particular attention to the form of the solution in the intervening vacuum region and illustrate the validity of Birkhoff’s theorem at both the metric and tetrad level. We then reconsider critically the original theoretical arguments underlying the so-called \(R_{\mathrm{h}} = ct\) cosmological model, which has recently received considerable attention. These considerations in turn illustrate the interesting behaviour of a number of ‘horizons’ in general cosmological models.  相似文献   

6.
We derive an operator expansion of the scalar, the spinor and the vector propagators in the presence of an arbitrary long range background field, using the Schwinger-DeWitt ‘proper time’ formalism. This has the advantage of keeping the expansion gauge covariant at all stages. These results may be used to calculate the leading background effects in the one-loop correlation functions.  相似文献   

7.
We present a model of gauge theory based on the symmetry group G×SU(2) where G is the gravitational gauge group and SU(2) is the internal group of symmetry. We employ the spacetime of four-dimensional Minkowski, endowed with spherical coordinates, and describe the gauge fields by gauge potentials. The corresponding strength field tensors are calculated and the field equations are written. A solution of these equations is obtained for the case that the gauge potentials have a particular form potentials induces a metric of Schwarzschild type on with spherical symmetry. The solution for the gravitational the gravitational gauge group space.  相似文献   

8.
Based on a generalized Yang-Mills framework, gravitational and strong interactions can be unified in analogy with the unification in the electroweak theory. By gauging T (4) × [SU (3)] color in flat space-time, we have a unified model of chromo-gravity with a new tensor gauge field, which couples universally to all gluons, quarks and anti-quarks. The space-time translational gauge symmetry assures that all wave equations of quarks and gluons reduce to a Hamilton-Jacobi equation with the same ’effective Riemann metric tensors’ in the geometric-optics (or classical) limit. The emergence of ef f ective metric tensors in the classical limit is essential for the unified model to agree with experiments. The unified model suggests that all gravitational, strong and electroweak interactions appear to be dictated by gauge symmetries in the generalized Yang-Mills framework.  相似文献   

9.
An attempt has been taken to solve the field equations of Barber's second self creation theory with a perfect fluid in an inhomogeneous anisotropic Locally rotationally symmetric Bianchi type I space-time where the metric potentials are arbitrary functions of x and t. Because of the mathematical complexities, for particular forms of metric potentials vacuum, Zeldovich and radiation models are determined. It is shown that -vacuum model does not exist with the above choice of metric potentials. Even though the geometrical structure of Zeldovich and radiation models are the same and reveal same physical behaviour but they are governed by different Barber's scalar.  相似文献   

10.
Vacuum field equations for gravity are studied having their origin in a Lagrangian quadratic in the curvature. The motivation for this choice of the Lagrangian—namely the treating of gravity in a strict analogy to gauge theories of Yang-Mills type—is criticized, especially the implied view of connections as gauge potentials with no dynamical relation to the metric. The correct field equations with respect to variation of the connections and the metric independently are given. We deduce field equations which differ from previous ones by variation of the metric, the torsion, and the nonmetricity from which the connections are built.  相似文献   

11.
《Nuclear Physics B》1986,274(2):253-284
The conditions for spacetime supersymmetry of the heterotic superstring in backgrounds with arbitrary metric, torsion, Yang-Mills and dilaton expectation values are determined using the sigma model approach. The resulting equations are explicitly solved for the torsion and dilaton fields, and the remaining equations cast in a simple form. Previously unnoticed topological obstructions to solving these equations are found. The equations are shown to agree to leading order in perturbation theory with those derived in a field theory approach, provided one considers a more general ansatz than in previous analyses by allowing for a warp factor for the metric. Exact solutions with non-zero torsion are found, indicating a new class of finite sigma models. These solutions break the Eχ ⊗ Eχ or SO(32) gauge group down to a large variety of subgroups. Orbifolds with torsion are constructed. A perturbative analysis of the equations indicates a class of solutions whose existence has been recently argued for on other grounds. Brief comments are made on the implications for phenomenology.  相似文献   

12.
13.
We show that a considerable part of the theory of (ultra)distributions and hyperfunctions can be extended to more singular generalized functions, starting from an angular localizability notion introduced previously. Such an extension is needed to treat quantum gauge field theories with indefinite metric in a generic covariant gauge. Prime attention is paid to the generalized functions defined on the Gelfand-Shilov spaces which gives the widest framework for construction of gauge-like models. We associate a similar test function space with every open and every closed cone, show that these spaces are nuclear and obtain the required formulas for their tensor products. The main results include the generalization of the Paley–Wiener–Schwartz theorem to the case of arbitrary singularity and the derivation of the relevant theorem on holomorphic approximation. Received: 29 December 1995 / Accepted: 13 September 1996  相似文献   

14.
A gauge theory with gauge potentials that are compatible with right invariant metric of the gauge group is presented. It is shown that in the metric compatible torsion free gauge theory, gauge potentials can acquire the mass, without introducing the tliggs field. A plane-wave exact solution in vacuum is obtained.  相似文献   

15.
The field equations of general relativity with electromagnetic stress tensor and zeromass scalar meson field are investigated. The metric coefficients are assumed to be functions of three variables only. It is then shown that, if one assumes a functional relation between some one of the metric coefficients and the electromagnetic potentials, that one can find a solution of the coupled Einstein-Maxwell equations in terms of a solution of the Einstein equations with zeromass scalar meson field as source.  相似文献   

16.
Integrability of equations of topological-antitopological fusion (being proposed by Cecotti and Vafa) describing the ground state metric on a given 2D topological field theory (TFT) model, is proved. For massive TFT models these equations are reduced to a universal form (being independent on the given TFT model) by gauge transformations. For massive perturbations of topological conformal field theory models the separatrix solutions of the equations bounded at infinity are found by the isomonodromy deformations method. Also it is shown that the ground state metric together with some part of the underlined TFT structure can be parametrized by pluriharmonic maps of the coupling space to the symmetric space of real positive definite quadratic forms.  相似文献   

17.
The inclusion of a flat metric tensor in gravitation permits the formulation of a gravitational stress-energy tensor and the formal derivation of general relativity from a linear theory in flat spacetime. Building on the works of Kraichnan and Deser, we present such a derivation using universal coupling and gauge invariance.Next we slightly weaken the assumptions of universal coupling and gauge invariance, obtaining a larger "slightly bimetric" class of theories, in which the Euler-Lagrange equations depend only on a curved metric, matter fields, and the determinant of the flat metric. The theories are equivalent to generally covariant theories with an arbitrary cosmological constant and an arbitrarily coupled scalar field, which can serve as an inflaton or dark matter.The question of the consistency of the null cone structures of the two metrics is addressed.  相似文献   

18.
We consider a large black hole in asymptotically anti-de Sitter spacetime of arbitrary dimension with a Minkowski boundary. By performing an appropriate slicing as we approach the boundary, we obtain via holographic renormalization a gauge theory fluid obeying Bjorken hydrodynamics in the limit of large longitudinal proper time. The metric we obtain reproduces to leading order the metric recently found as a direct solution of the Einstein equations in five dimensions. Our results are also in agreement with recent exact results in three dimensions.  相似文献   

19.
The covariance principle of general relativity is extended to internal space. Associated gauge fields and tensors are systematically described, whereupon the variational principle is set up for all gauge fields by applying a Palatini-type method, thereby giving rise to an attractive self-contained theory in which the Einstein equations are intrinsically synthesized with the generalized Yang-Mills equations. General gauge-covariant physical field equations are formulated, showing that currents, external + internal spin tensors, and energy-momentum tensors can be introduced unambiguously under these general conditions and that the associated conservation laws can be derived. The electromagnetic field finds its gauge-geometric origin as the gauge field related to internal densities. To be operative with the tensor indices of external and internal types, this general theory must be bimetric. The assumptions that the gauge-covariant derivatives of metric tensors should vanish simplify the theory to the level of a Finslerian gauge approach.  相似文献   

20.
Issuing from a geometry with nonmetricity and torsion we build up a generalized classical electrodynamics. This geometrically founded theory is coordinate covariant, as well as gauge covariant in the Weyl sense. Photons having arbitrary mass, intrinsic magnetic currents, (magnetic monopoles), and electric currents exist in this framework. The field equations, and the equations of motion of charged (either electrically or magnetically) particles are derived from an action principle. It is shown that the interaction between magnetic monopoles is transmitted by massive photons. On the other hand, the photon is massive only in the presence of magnetic currents. We obtained a static spherically symmetric solution, describing either the Reissner-Nordstrom metric of an electric monopole, or the metric and field of a magnetic monopole. The latter must be massive. In the absence of torsion and in the Einstein gauge one obtains the Einstein-Maxwell theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号