首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Effects of CP and T invariance violation are studied in the most general interaction of the Higgs boson with the intermediate vector W ± and Z bosons. Various angular distributions of the cascade decay Φ → W + W ?/ZZ → 4 of fermions in the transversity and helicity systems are calculated, and asymmetries are constructed and evaluated. It is shown that studying the azimuthal angle distribution of the process Φ → ZZ → (e ? e +)(μ?μ+) in the transversity system is effective for measuring the spatial parity of the Higgs boson.  相似文献   

2.
The T-invariance condition was analyzed for the amplitude T b,a of multiparticle multistep elastic or inelastic ab nuclear reactions. This condition leads to the equality of the amplitude T b,a to the amplitude \({\tilde T_{\bar a,\bar b}}\) of \(\bar b \to \bar a\) time-reversed reaction, for which the reaction operator \(\tilde T\) coincides with the inverse-reaction (ba) operator. It is shown that, in the case where the original, inverse, and time-reversed reactions are governed by a common T-invariant mechanism, the coefficients D of asymmetries appearing in the differential cross sections for these reactions can be represented in the form of a unified scalar (pseudoscalar) function of arguments equal to the momentum and spin vectors of particles of the initial and final channels of the reactions under analysis. It is also shown that the use of the T-invariance condition for the coefficients D of asymmetries in the differential cross section for the original nuclear reaction that are different in P- and T-parity makes it possible to separate mechanisms leading to nonzero coefficients D for a number of the asymmetries under analysis from the remaining mechanisms leading to zero coefficients D of these asymmetries. It is proven that there exist such asymmetries in the differential cross section for the original reaction whose coefficients vanish for all possible T-invariant mechanisms of their appearance, so that, upon proving experimentally the appearance of nonzero coefficients of these asymmetries in the differential cross section for the original reaction, this fact can be used to assess features of T-noninvariant interactions in nuclear systems.  相似文献   

3.
Ferromagnetism and ferroelectricity in Eu monochalcogenides have been investigated by ab initio density functional theory in the DFT+U approach. Exchange interaction parameters and Curie temperatures under pressure are studied and discussed using Heisenberg Hamiltonian with first and second-nearest-neighbor interactions. The calculations showed that the hydrostatic pressure perfectly improves the Curie temperature (EuO: T C = 175 K; EuS: T C = 33.8 K) and in the other hand it cannot induce the spontaneous polarization (P s ). The effect of uniaxial and biaxial pressure is also studied. Although the uniaxial strains slightly increases the Curie temperature, it ensures the ferrolectricity in these systems by producing a spontaneous polarization of the order of P s (EuO) = 57.50 μC/cm2 and P s (EuS) = 42.86 μC/cm2 with pressures of 5% and 4%, respectively. The search for new model systems is a necessity to better understand the physics related to multiferroïc materials and to consider possible applications.  相似文献   

4.
A formalism of the invariant spin amplitudes of the pd-scattering process in the Madison frame of reference is developed. The condition for T invariance with conservation of P-parity is formulated in terms of these amplitudes, and the relationships between differential spin observables that follow from this condition, are derived. The relative efficiency of the method for testing T-invariance on the basis of these relationships is compared to the method based on recording a null-test signal in an experiment with a polarized proton beam and the deuteron target.  相似文献   

5.
This paper contains the study of spherically symmetric perfect fluid collapse in the frame work of f(R, T) modified theory of gravity. We proceed our work by considering the non-static spherically symmetric background in the interior and static spherically symmetric background in the exterior regions of the star. The junction conditions between exterior and interior regions are presented by matching the exterior and interior regions. The field equations are solved by taking the assumptions that the Ricci scalar as well as the trace of energy-momentum tensor are to be constant, for a particular f(R, T) model. By inserting the solution of the field equations in junction conditions, we evaluate the gravitational mass of the collapsing system. Also, we discuss the apparent horizons and their time formation for different possible cases. It is concluded that the term f(R 0, T 0) behaves as a source of repulsive force and that’s why it slowdowns the collapse of the matter.  相似文献   

6.
A unified mechanism of the emergence of T-odd ROT- and TRI-asymmetries is proposed for describing experimental T-odd asymmetry coefficients D(θ) in the angular distributions of prescission alphaparticles that are emitted in true ternary and quaternary nuclear fission reactions induced by cold polarized neutrons. The mechanism is related to the different ways in which the Coriolis interaction of the total spin of a polarized compound fissile nucleus with the orbital moment of alpha-particles affects even (for ROT-asymmetries) and odd (for TRI-asymmetries) components of the amplitude of an undisturbed angular distribution of emitted alpha-particles. Coefficients DROT(θ) and DTRI(θ) derived with this mechanism for T-odd ROT- and TRI-asymmetries successfully describe the dependences of corresponding experimental coefficients for 235U and 239Pu nuclei over the range of angles θ, and for the 233U nucleus in the angular range of 60° < θ < 110°. It is explained why only ROT-type T-odd asymmetries emerge for evaporated neutrons and γ-quanta emitted by fission fragments in similar reactions if we allows for the Coriolis interaction of the total spin of the compound fissile nucleus with the orbital moments of the fission fragments and the wriggling vibrations of the above nucleus near its scission point.  相似文献   

7.
In this paper, we have proposed S U(2) non-Abelian electromagnetism gauge theory. In the theory, photon has self-interaction and interaction between them, which can explain photon entanglement phenomenon in quantum information. Otherwise, we find there are three kinds photons γ +, γ ? and γ 0, they have electric charge + e γ , ? e γ and 0, respectively, these prediction are accordance with some experiment results.  相似文献   

8.
Proton-neutron correlations in 4Hep interactions are studied in an exclusive experiment by using a 2-m bubble chamber exposed to a 5-GeV/c beam of α particles (the kinetic energy of the protons in the nucleus rest frame is T p = 620 MeV). Data on the production of pn pairs in 4π geometry for three channels, where it is possible to reconstruct the neutron momentum unambiguously, are used to determine the pn correlation function in 4Hep interactions. The experimental results are compared with the predictions of a modified Lednicky-Lyuboshitz model. The value obtained for the root-mean-square radius of the pn-emission region is R pn = 2.1 ± 0.3 fm. The dependence of the correlation function on the modulus of the total momentum of the emitted nucleon pair and on the direction of the momentum transfer is studied. An indication that the emission of a pn pair proceeds predominantly through the production of a virtual deuteron is obtained.  相似文献   

9.
We study f(T) cosmological models inserting a non-vanishing spatial curvature and discuss its consequences on cosmological dynamics. To figure this out, a polynomial f(T) model and a double torsion model are considered. We first analyze those models with cosmic data, employing the recent surveys of Union 2.1, baryonic acoustic oscillation and cosmic microwave background measurements. We then emphasize that the two popular f(T) models enable the crossing of the phantom divide line due to dark torsion. Afterwards, we compute numerical bounds up to 3-\(\sigma \) confidence level, emphasizing the fact that \(\Omega _{k0}\) turns out to be non-compatible with zero at least at 1\(\sigma \). Moreover, we underline that, even increasing the accuracy, one cannot remove the degeneracy between our models and the \(\Lambda \)CDM paradigm. So that, we show that our treatments contain the concordance paradigm and we analyze the equation of state behaviors at different redshift domains. We also take into account gamma ray bursts and we describe the evolution of both the f(T) models with high redshift data. We calibrate the gamma ray burst measurements through small redshift surveys of data and we thus compare the main differences between non-flat and flat f(T) cosmology at different redshift ranges. We finally match the corresponding outcomes with small redshift bounds provided by cosmography. To do so, we analyze the deceleration parameters and their variations, proportional to the jerk term. Even though the two models well fit late-time data, we notice that the polynomial f(T) approach provides an effective de-Sitter phase, whereas the second f(T) framework shows analogous results compared with the \(\Lambda \)CDM predictions.  相似文献   

10.
In this paper, we investigate the Noether symmetries of F(T) cosmology involving matter and dark energy. In this model, the dark energy is represented by a canonical scalar field with a potential. Two special cases for dark energy are considered, including phantom energy and quintessence. We obtain F(T)~T 3/4, and the scalar potential V(?)~? 2 for both models of dark energy and discuss quantum picture of this model. Some astrophysical implications are also discussed.  相似文献   

11.
Recent experiment by A1 Collaboration at Mainz, namely identification of Λ 4H hyperfragment from primary Λ 9Li hypernucleus produced in reaction (e, eK +), stirred renewed interest in baryonic decay of hypernuclei. The important role of s ?1 s Λ excitation in p-shell hypernuclei as well as the existence of selection rules connected with [f] (Young diagram) was noted earlier within Translational Invariant Shell Model (TISM). The particular conditions of the present experiment (reaction is not selective and produces highly excited states) dictate extension of the simplest TISM: expansion of the harmonic oscillator basis space and compression of multiplets (to only (λμ) for L and [f] for S, T). Such modified TISM explains abundance production of Λ 4H hyperfragment and predicts production of another Hyper Hydrogen Λ 6H.  相似文献   

12.
The capacitance-voltage and current-voltage characteristics of the n-CdS/p-CdTe heterosystem are investigated. Analysis of these characteristics demonstrates that the CdTe1?x S x solid solution formed at the n-CdS/p-CdTe heterointerface is inhomogeneous in both the conductivity and composition. The thickness of solid solutions is estimated from the capacitance-voltage characteristics. It is shown that, for the n-CdS/p-CdTe heterosystem, the current-voltage characteristic in the current density range 10?8-10?5 A cm?2 is governed by the thermal electron emission, whereas the current in the heterostructure at current densities in the range 10?4-10?2 A cm?2 is limited by recombination of charge carriers in the electroneutral region of the CdTe1?x S x solid solution. The lifetime and the diffusion length of minority charge carriers in the CdTe1?x S x solid solution and the surface recombination rate at the interface between the CdS layer and the CdTe1?x S x solid solution are determined. It is demonstrated that the n-CdS/p-CdTe heterostructure operates as a p-i-n structure in which CdTe is a p layer, CdTe1?x S x is an i layer, and CdS is an n layer.  相似文献   

13.
T-invariance conditions for the differential cross sections of multiparticle multistep nuclear reactions are found with allowance for spin orientations of particles in the initial channels of such reactions. It is shown that the asymmetry coefficients for different T-parities in the differential cross sections for original and time-reversed reactions are expressed in terms of unified scalar (pseudoscalar) functions that depend of the 3-momenta and spins of particles involved in the initial and final channels of the reactions under analysis. It is also shown that knowledge of the aforementioned functions for the asymmetries under analysis in the original reaction makes it possible to reconstruct the respective functions for the analogous asymmetries in the time-reversed reaction without studying it experimentally. By considering the example of T-even and T-odd asymmetries in reactions where oriented nuclei undergo binary and ternary fission induced by cold polarized neutrons, it is demonstrated that the T-invariance conditions in question can be used to select mechanisms behind the appearance of the above asymmetries—in particular, mechanisms associated with the presence of T-noninvariant interactions.  相似文献   

14.
It is shown that a quantum system whose Hamiltonian is independent of time is T -invariant if this Hamiltonian contains only those terms that do not change sign upon time reversal. It is also shown that the coincidence of the amplitudes for multistep direct and statistical nuclear reactions with the timereversed amplitudes for the reactions being studied is a condition that ensures the T -invariance of the amplitudes in question, the transition from the original amplitudes to their time-reversed counterparts being accomplished, first, upon introducing the inverse-reactionmatrices T instead of the original-reaction matrix T and, second, upon replacing the wave functions for the initial, final, and intermediate states of the system by the respective time-reversed functions. It is found that the T -even (T -odd) asymmetries in cross sections for nuclear reactions stem from the interference between the amplitudes characterizing these reactions and having identical (opposite) T -parities. It is shown that the T -invariance condition for the above T -even (T -odd) asymmetries is related to the conservation of (change in) the sign of these asymmetries upon going over from original to inverse nuclear reactions. Mechanisms underlying the appearance of possible T -even and T-odd asymmetries in the cross sections for the cold-polarizedneutron- induced binary and ternary fission of oriented target nuclei are analyzed for the case of employing T -invariant Hamiltonians for the systems under study. It is also shown that the asymmetries in question satisfy the T -invariance condition if the reactions being considered have a sequential multistep statistical character. It is concluded that T -invariance is violated in the limiting case where, in ternary nuclear fission, the emission of a light third particle froma fissile compound nucleus formed upon incident-neutron capture by a target nucleus and its separation to two fission fragments are simultaneous events.  相似文献   

15.
The final-state interaction of pions in K e4 decay allows to obtain the value of the isospin and angular-momentum-zero ππ scattering length a 0 0 .We take into account the electromagnetic interaction of pions and isospin-symmetry-breaking effects caused by different masses of neutral and charged pions and estimate the impact of these effects on the procedure of scattering-length extraction from K e4 decays.  相似文献   

16.
The theoretical and observational consequences of thermodynamics of open systems which allow matter creation, are investigated in modified f(R, T) (R is the Ricci scalar and T is the trace of energy-momentum tensor) theory of gravity within the framework of a flat Friedmann-Robertson-Walker line element. The simplest model f(R, T)=R+2f(T) with “gamma-law” equation of state p = (γ?1)ρ is assumed to obtain the exact solution. A power-law expansion model is proposed by considering the natural phenomenological particle creation rate ψ = 3β n H, where β is a pure number of the order of unity, n the particle number density and H is the Hubble parameter. A Big Rip singularity is observed for γ<0 describing phantom cosmology. The accelerated expansion of the Universe is driven by the particle creation. The density parameter shows the negative curvature of the Universe due to particle creation. The entropy increases with the evolution of the Universe. Some kinematics tests such as lookback time, luminosity distance, proper distance, angular diameter versus redshift are discussed in detail to observe the role of particle creation in early and late time evolution of the Universe.  相似文献   

17.
The contributions to the parameters S, T, and U of radiative corrections from the doublets of scalar leptoquarks and scalar gluons are analyzed within the minimal model based on four-color symmetry of the Pati-Salam type. It is shown that current experimental data on the parameters S, T, and U admit the existence of relatively light scalar leptoquarks and scalar gluons (of mass lower than 1 TeV), the best fit to experimental data being attained at mass values not greater than 400 GeV. In particular, the existence of scalar leptoquarks of mass below 300 GeV is found to be compatible with data on the parameters S, T, and U at χ2 < 3.1 (3.2) for mH = 115 (300) GeV as against χ SM 2 = 3.5 (5.0) in the Standard Model. The mass of the lightest scalar gluon is then predicted to be less than 850 (720) GeV. It is emphasized that the aforementioned doublets of scalar leptoquarks and scalar gluons can play a significant role in processes involving a t quark at LHC.  相似文献   

18.
The exact solutions of the field equations with respect to hypersurface-homogeneous Universe filled with perfect fluid in the framework of f(R, T) theory of gravity (Harko et al, Phys. Rev. D 84, 024020 (2011)) is derived. The physical behaviour of the cosmological model is studied.  相似文献   

19.
In the standard formulation, the f(T) field equations are not invariant under local Lorentz transformations, and thus the theory does not inherit the causal structure of special relativity. Actually, even locally violation of causality can occur in this formulation of f(T) gravity. A locally Lorentz covariant f(T) gravity theory has been devised recently, and this local causality problem seems to have been overcome. The non-locality question, however, is left open. If gravitation is to be described by this covariant f(T) gravity theory there are a number of issues that ought to be examined in its context, including the question as to whether its field equations allow homogeneous Gödel-type solutions, which necessarily leads to violation of causality on non-local scale. Here, to look into the potentialities and difficulties of the covariant f(T) theories, we examine whether they admit Gödel-type solutions. We take a combination of a perfect fluid with electromagnetic plus a scalar field as source, and determine a general Gödel-type solution, which contains special solutions in which the essential parameter of Gödel-type geometries, \(m^2\), defines any class of homogeneous Gödel-type geometries. We show that solutions of the trigonometric and linear classes (\(m^2 < 0\) and \(m=0\)) are permitted only for the combined matter sources with an electromagnetic field matter component. We extended to the context of covariant f(T) gravity a theorem which ensures that any perfect-fluid homogeneous Gödel-type solution defines the same set of Gödel tetrads \(h_A^{~\mu }\) up to a Lorentz transformation. We also showed that the single massless scalar field generates Gödel-type solution with no closed time-like curves. Even though the covariant f(T) gravity restores Lorentz covariance of the field equations and the local validity of the causality principle, the bare existence of the Gödel-type solutions makes apparent that the covariant formulation of f(T) gravity does not preclude non-local violation of causality in the form of closed time-like curves.  相似文献   

20.
We discuss dark-energy cosmological models in f(G) gravity. For this purpose, a locally rotationally symmetric Bianchi type I cosmological model is considered. First, exact solutions with a well-known form of the f(G) model are explored. One general solution is discussed using a power-law f(G) gravity model and physical quantities are calculated. In particular, Kasner’s universe is recovered and the corresponding f(G) gravity models are reported. Second, the energy conditions for the model under consideration are discussed using graphical analysis. It is concluded that solutions with f(G) = G5/6 support expansion of universe while those with f(G) = G1/2 do not favor the current expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号