首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The mole fractions of AgBr and Ag3Br3 in the saturated vapor at 840 K have been evaluated from the vapor mass spectrum, by comparison with the corresponding spectrum of AgCl vapor, where the monomer/trimer ratio is known accurately from vapor molecular weight measurements. Combination of these results with new measurements of the vapor pressure of molten AgBr by the torsion-effusion method in the range 805-936 K yielded the third law enthalpies of vaporization and the standard enthalpies of formation DeltafH degrees 298(AgBr, g) = 27.8 +/- 0.3 kcal mol(-1) and DeltafH degrees 298(Ag3Br3, g) = -19.0 +/- 1 kcal mol(-1). The dissociation energy, D degrees 0(AgBr), is found to be 66.4 +/- 0.3 kcal mol(-1), or 2.88 +/- 0.01 eV, some 3.5-5 kcal mol(-1) lower than previous literature values. Approximate thermochemical stabilities of the dimer species Ag2Cl2 and Ag2Br2 have also been evaluated.  相似文献   

2.
Gaseous equilibria in the V-Ag-Cl system were studied at elevated temperatures by effusion-beam mass spectrometry, where the pertinent species were generated by reaction of Cl 2(g) with V + Ag granules in the effusion cell source. Reaction enthalpies were derived from the equilibrium data, and the standard enthalpies of formation at 298 K of gaseous VCl, VCl2, and VCl3 were found to be +49.7, -34.8, and -85.6 kcal mol(-1), respectively. The corresponding bond dissociation energies at 298 K are D(V-Cl) = 102.9 kcal, D(ClV-Cl) = 113.5 kcal, D(Cl2V-Cl) = 79.8 kcal, and D(Cl3V-Cl) = 69.5 kcal. From these data, the dissociation energy D degrees 0(VCl) = 101.9 kcal mol(-1) or 4.42 eV is obtained. An alternate value, Delta(f)H(o)298(VCl 3,g) = -87.0 kcal mol (-1) was derived from third-law analysis of literature sublimation data for VCl3(s). In addition, literature thermochemical data on VCl4(g) were re-evaluated, leading to Delta(f)H(o)298 = -126.1 kcal mol (-1). The results are compared with various estimates in the literature.  相似文献   

3.
The diatomic molecules SiPb and GePb were for the first time identified by producing high temperature vapors of the constituent pure elements in a "double-oven-like" molecular-effusion assembly. The partial pressures of the atomic, heteronuclear, and homonuclear gaseous species observed in the vapor, namely, Si, Ge, Pb, SiPb, GePb, Pb2, Gen, and Sin (n=2-3), were mass-spectrometrically measured in the overall temperature ranges 1753-1961 K (Ge-Pb) and 1992-2314 K (Si-Pb). The dissociation energies of the new species were determined by second- and third-law analyses of both the direct dissociation reactions and isomolecular exchange reactions involving homonuclear molecules. The selected values of the dissociation energies at 0 K (D0 degrees) are 165.1+/-7.3 and 141.6+/-6.9 kJ/mol, respectively, for SiPb and GePb, and the corresponding enthalpies of formation (DeltafH0 degrees) are 476.4+/-7.3 and 419.3+/-6.9 kJ/mol. The ionization efficiency curves of the two species were measured, giving the following values for the first ionization energies: 7.0+/-0.2 eV (SiPb) and 7.1+/-0.2 eV (GePb). A computational study of the species SiPb and GePb was also carried out at the CCSD(T) level of theory using the relativistic electron core potential approach. Molecular parameters, adiabatic ionization energies, adiabatic electron affinities, and dissociation energies of the title species were calculated, as well as the enthalpy changes of the exchange reactions involving the other Pb-containing diatomics of group 14. Finally, a comparison between the experimental and theoretical results is presented, and from a semiempirical correlation the unknown dissociation energies of the SiSn and PbC molecules are predicted as 234+/-7 and 185+/-11 kJ/mol, respectively.  相似文献   

4.
Aqueous solutions of rhodium(III) tetra p-sulfonatophenyl porphyrin ((TSPP)Rh(III)) complexes react with dihydrogen to produce equilibrium distributions between six rhodium species including rhodium hydride, rhodium(I), and rhodium(II) dimer complexes. Equilibrium thermodynamic studies (298 K) for this system establish the quantitative relationships that define the distribution of species in aqueous solution as a function of the dihydrogen and hydrogen ion concentrations through direct measurement of five equilibrium constants along with dissociation energies of D(2)O and dihydrogen in water. The hydride complex ([(TSPP)Rh-D(D(2)O)](-4)) is a weak acid (K(a)(298 K) = (8.0 +/- 0.5) x 10(-8)). Equilibrium constants and free energy changes for a series of reactions that could not be directly determined including homolysis reactions of the Rh(II)-Rh(II) dimer with water (D(2)O) and dihydrogen (D(2)) are derived from the directly measured equilibria. The rhodium hydride (Rh-D)(aq) and rhodium hydroxide (Rh-OD)(aq) bond dissociation free energies for [(TSPP)Rh-D(D(2)O)](-4) and [(TSPP)Rh-OD(D(2)O)](-4) in water are nearly equal (Rh-D = 60 +/- 3 kcal mol(-1), Rh-OD = 62 +/- 3 kcal mol(-1)). Free energy changes in aqueous media are reported for reactions that substitute hydroxide (OD(-)) (-11.9 +/- 0.1 kcal mol(-1)), hydride (D(-)) (-54.9 kcal mol(-1)), and (TSPP)Rh(I): (-7.3 +/- 0.1 kcal mol(-1)) for a water in [(TSPP)Rh(III)(D(2)O)(2)](-3) and for the rhodium hydride [(TSPP)Rh-D(D(2)O)](-4) to dissociate to produce a proton (9.7 +/- 0.1 kcal mol(-1)), a hydrogen atom (approximately 60 +/- 3 kcal mol(-1)), and a hydride (D(-)) (54.9 kcal mol(-1)) in water.  相似文献   

5.
We report diffusion quantum Monte Carlo (DMC) calculations of the equilibrium dissociation energy D(e) of the water dimer. The dissociation energy measured experimentally, D(0), can be estimated from D(e) by adding a correction for vibrational effects. Using the measured dissociation energy and the modern value of the vibrational energy Mas et al., [J. Chem. Phys. 113, 6687 (2000)] leads to D(e)=5.00+/-0.7 kcal mol(-1), although the result Curtiss et al., [J. Chem. Phys. 71, 2703 (1979)] D(e)=5.44+/-0.7 kcal mol(-1), which uses an earlier estimate of the vibrational energy, has been widely quoted. High-level coupled cluster calculations Klopper et al., [Phys. Chem. Chem. Phys. 2, 2227 (2000)] have yielded D(e)=5.02+/-0.05 kcal mol(-1). In an attempt to shed new light on this old problem, we have performed all-electron DMC calculations on the water monomer and dimer using Slater-Jastrow wave functions with both Hartree-Fock approximation (HF) and B3LYP density functional theory single-particle orbitals. We obtain equilibrium dissociation energies for the dimer of 5.02+/-0.18 kcal mol(-1) (HF orbitals) and 5.21+/-0.18 kcal mol(-1) (B3LYP orbitals), in good agreement with the coupled cluster results.  相似文献   

6.
The heat of hydrogenation of phenylcyclobutadiene (DeltaH degrees (hyd) = 57.4 +/- 4.9 kcal mol(-1)) was determined via a thermodynamic cycle by carrying out gas-phase measurements on 1-phenylcyclobuten-3-yl cation. This leads to an antiaromatic destabilization energy of 27 +/- 5 kcal mol(-1), a difference of 9.6 +/- 4.9 kcal mol(-1) for the first and second C-H bond dissociation energies of 1-phenylcyclobutene, and an estimate of 96 +/- 5 kcal mol(-1) for the heat of formation of cyclobutadiene. These results are compared to G3, G3(MP2), and B3LYP computations and represent the first experimental measurements of the energy of a monocyclic cyclobutadiene.  相似文献   

7.
The acidities of the two different sites in naphthalene (1alpha and 1beta) and the electron affinities of the alpha- and beta-naphthyl radicals were measured using a Fourier transform mass spectrometer. Both carbon-hydrogen bond dissociation energies for naphthalene also were obtained, in this case via the application of a thermodynamic cycle. The final results are DeltaH(o)acid (1alpha) = 394.2+/-1.2 kcal mol(-1), DeltaH(o)acid (1beta) = 395.5+/-1.3 kcal mol(-1), EA(alpha) = 31.6+/-0.5 kcal mol(-1), EA(beta) = 31.6+/-0.5 kcal mol(-1), BDE(1alpha) = 112.2+/-1.3 kcal mol(-1) and BDE(1alpha) = 111.9+/-1.4 kcal mol(-1), and they are compared to benzene and phenyl radical as well as ab initio and density functional theory (B3LYP) calculations.  相似文献   

8.
The accurate interaction energies of the CH/pi interaction in the benzene-X clusters (X = ethylene and acetylene) were experimentally and theoretically determined. Two-color multiphoton ionization spectroscopy was applied, and the binding energies in the neutral ground state of the clusters were evaluated from the dissociation threshold measurements of the cluster cations. The experimental binding energies of the clusters (D0) were 1.4+/-0.2 and 2.7+/-0.2 kcal/mol, respectively. Estimated CCSD(T) interaction energies for the clusters at the basis set limit (De) were 2.2 and 2.8 kcal/mol, respectively. Calculated D0 values (1.7 and 2.4 kcal/mol, respectively) are close to the experimental values. Large electron correlation contributions (Ecorr=-3.6 and -2.8 kcal/mol, respectively) show that dispersion is the major source of the attraction in both clusters. The electrostatic interaction in the ethylene cluster is very small (-0.38 kcal/mol), as in the case of the benzene-methane cluster, whereas the electrostatic interaction in the acetylene cluster is large (-1.70 kcal/mol). The shifts of the S1-S0 transition also suggest that the ethylene cluster is a van der Waals-type cluster, but the acetylene cluster is a pi-hydrogen-bonded cluster. The nature of the CH/pi interaction of the "activated" alkyne C-H bond is significantly different from that of the "nonactivated" (or typical) alkane and alkene C-H bonds.  相似文献   

9.
The 351.1 nm photoelectron spectra of the N-methyl-5-pyrazolide anion and the N-methyl-5-imidazolide anion are reported. The photoelectron spectra of both isomers display extended vibrational progressions in the X2A' ground states of the corresponding radicals that are well reproduced by Franck-Condon simulations, based on the results of B3LYP/6-311++G(d,p) calculations. The electron affinities of the N-methyl-5-pyrazolyl radical and the N-methyl-5-imidazolyl radical are 2.054 +/- 0.006 eV and 1.987 +/- 0.008 eV, respectively. Broad vibronic features of the A(2)A' ' states are also observed in the spectra. The gas-phase acidities of N-methylpyrazole and N-methylimidazole are determined from measurements of proton-transfer rate constants using a flowing afterglow-selected ion flow tube instrument. The acidity of N-methylpyrazole is measured to be Delta(acid)G(298) = 376.9 +/- 0.7 kcal mol(-1) and Delta(acid)H(298) = 384.0 +/- 0.7 kcal mol(-1), whereas the acidity of N-methylimidazole is determined to be Delta(acid)G(298) = 380.2 +/- 1.0 kcal mol(-1) and Delta(acid)H(298)= 388.1 +/- 1.0 kcal mol(-1). The gas-phase acidities are combined with the electron affinities in a negative ion thermochemical cycle to determine the C5-H bond dissociation energies, D(0)(C5-H, N-methylpyrazole) = 116.4 +/- 0.7 kcal mol(-1) and D(0)(C5-H, N-methylimidazole) = 119.0 +/- 1.0 kcal mol(-1). The bond strengths reported here are consistent with previously reported bond strengths of pyrazole and imidazole; however, the error bars are significantly reduced.  相似文献   

10.
The standard enthalpy of formation of FCO(2) (X (2)B(2)) was determined by a computational approach based on coupled cluster theory [CCSD(T)] with energies extrapolated to the basis-set limit, with additional corrections accounting for core-valence correlation, scalar relativity, spin-orbit coupling, and zero-point vibrational motions. Utilizing a variety of independent reaction schemes, our best estimate is Delta(f)H(o)(0)(FCO(2)) = -86.0 +/- 0.6 kcal mol(-1) [Delta(f)H(o)(298) )(FCO(2)) = -86.7 +/- 0.6 kcal mol(-1)], which is shown to be more accurate than previous theoretical and experimental values. The chosen computational procedure was also applied to HCO (X (2)A'), where we find excellent agreement with experiment, and to FCO (X (2)A'), where we recommend an improved value of Delta(f)H(o)(0)(FCO) = -42.1 +/- 0.5 kcal mol(-1) [ Delta(f)H(o)(298)(FCO) = -42.0 +/- 0.5 kcal mol(-1)]. Further theoretical results concern the C-F bond dissociation energy, electron affinity, ionization energy, first and second excitation energies in FCO(2), fluoride ion affinity of CO(2), and equilibrium geometries of the molecules treated presently. For FCO (X (2)A') we propose an improved equilibrium structure: r(e)(CF) = 132.5(2) pm, r(e)(CO) = 116.7(2) pm, and theta(e)(FCO) = 127.8(2)(o).  相似文献   

11.
Thermochemical parameters of three C(2)H(5)O* radicals derived from ethanol were reevaluated using coupled-cluster theory CCSD(T) calculations, with the aug-cc-pVnZ (n = D, T, Q) basis sets, that allow the CC energies to be extrapolated at the CBS limit. Theoretical results obtained for methanol and two CH(3)O* radicals were found to agree within +/-0.5 kcal/mol with the experiment values. A set of consistent values was determined for ethanol and its radicals: (a) heats of formation (298 K) DeltaHf(C(2)H(5)OH) = -56.4 +/- 0.8 kcal/mol (exptl: -56.21 +/- 0.12 kcal/mol), DeltaHf(CH(3)C*HOH) = -13.1 +/- 0.8 kcal/mol, DeltaHf(C*H(2)CH(2)OH) = -6.2 +/- 0.8 kcal/mol, and DeltaHf(CH(3)CH(2)O*) = -2.7 +/- 0.8 kcal/mol; (b) bond dissociation energies (BDEs) of ethanol (0 K) BDE(CH(3)CHOH-H) = 93.9 +/- 0.8 kcal/mol, BDE(CH(2)CH(2)OH-H) = 100.6 +/- 0.8 kcal/mol, and BDE(CH(3)CH(2)O-H) = 104.5 +/- 0.8 kcal/mol. The present results support the experimental ionization energies and electron affinities of the radicals, and appearance energy of (CH(3)CHOH+) cation. Beta-C-C bond scission in the ethoxy radical, CH(3)CH2O*, leading to the formation of C*H3 and CH(2)=O, is characterized by a C-C bond energy of 9.6 kcal/mol at 0 K, a zero-point-corrected energy barrier of E0++ = 17.2 kcal/mol, an activation energy of Ea = 18.0 kcal/mol and a high-pressure thermal rate coefficient of k(infinity)(298 K) = 3.9 s(-1), including a tunneling correction. The latter value is in excellent agreement with the value of 5.2 s(-1) from the most recent experimental kinetic data. Using RRKM theory, we obtain a general rate expression of k(T,p) = 1.26 x 10(9)p(0.793) exp(-15.5/RT) s(-1) in the temperature range (T) from 198 to 1998 K and pressure range (p) from 0.1 to 8360.1 Torr with N2 as the collision partners, where k(298 K, 760 Torr) = 2.7 s(-1), without tunneling and k = 3.2 s(-1) with the tunneling correction. Evidence is provided that heavy atom tunneling can play a role in the rate constant for beta-C-C bond scission in alkoxy radicals.  相似文献   

12.
Radical anions of o-, m-, and p-benzoquinone were produced in a Fourier transform mass spectrometer by low energy electron attachment or collision-induced dissociation and were differentiated. Classical derivatization experiments also were carried out to authenticate the ortho and meta anions. Gas-phase techniques were used to measure the proton affinities of all three radical anions and the electron affinities of o- and m-benzoquinone. By combining these results in thermodynamic cycles, we derived heats of hydrogenation of o-, m-, and p-benzoquinone (Delta(hyd)H degrees (1o, 1m, and 1p) = 42.8 +/- 4.1, 74.8 +/- 4.1, and 38.5 +/- 3.0 kcal mol(-)(1), respectively) and their heats of formation (Delta(f)H degrees (1o, 1m, and 1p) = -23.1 +/- 4.1, 6.8 +/- 4.1, and -27.7 +/- 3.0 kcal mol(-)(1), respectively). Good accord with the literature value for the para derivative was obtained. Combustion calorimetry and heats of sublimation also were measured for benzil and 3,5-di-tert-butyl-o-benzoquinone. The former heat of formation agreed with previous determinations, while the latter result (Delta(f)H degrees (g) = -73.09 +/- 0.87 kcal mol(-)(1)) was transformed to Delta(f)H degrees (1o) = -18.9 +/- 2.2 kcal mol(-)(1) by removing the effect of the tert-butyl groups via isodesmic reactions. This led to a final value of Delta(f)H degrees (1o) = -21.0 +/- 3.1 kcal mol(-)(1). Additivity was found to work well for m-benzoquinone, but BDE1 and BDE2 for 1,2- and 1,4-dihydroxybenzene differed by a remarkably small 14.1 +/- 4.2 and 23.5 +/- 3.7 kcal mol(-)(1), respectively, indicating that o- and p-benzoquinone should be excellent radical traps.  相似文献   

13.
The gas-phase acidity of 3,3-dimethylcyclopropene (1) has been measured by bracketing and equilibrium techniques. Consistent with simple hybridization arguments, our value (deltaH degrees (acid) = 382.7 +/- 1.3 kcal mol(-)(1)) is indistinguishable from that for methylacetylene (i.e., deltadeltaH degrees (acid)(1 - CH(3)Ctbd1;CH) = 1.6 +/- 2.5 kcal mol(-)(1)). The electron affinity of 3,3-dimethylcyclopropenyl radical (1r) was also determined (EA = 37.6 +/- 3.5 kcal mol(-)(1)), and these quantities were combined in a thermodynamic cycle to afford the homolytic C-H bond dissociation energy. To our surprise, the latter quantity (107 +/- 4 kcal mol(-)(1)) is the same as that for methane, which cannot be explained in terms of the s-character in the C-H bonds. An orbital explanation (delocalization) is proposed to account for the extra stability of 1r. All of the results are supplemented with G3 and B3LYP computations, and both approaches are in good accord with the experimental values. We also note that for simple hydrocarbons which give localized carbanions upon deprotonation there is an apparent linear correlation between any two of the following three quantities: deltaH degrees (acid), BDE, and EA. This observation could be of considerable value in many diverse areas of chemistry.  相似文献   

14.
The SnPb molecule has been identified in a Knudsen effusion mass spectrometry experiment. The direct dissociation reaction and two isomolecular exchange reactions involving the Sn(2) and Pb(2) molecules have been studied, in the 1426-1705 K range of temperatures, using both second and third law procedures. The D(degree)0(SnPb,g) has been derived, for the first time, as (122.6+/-4.0) kJ mol(-1). Density functional and ab initio calculations up to the coupled clusters level of theory were also performed. In addition, the anion dissociation energy D(degree)0(SnPb(-),g) of (179.2+/-4.2) kJ mol(-1) was determined using the D(degree)0(SnPb,g) mass spectrometric value derived in this investigation and literature data.  相似文献   

15.
A coupled cluster composite approach has been used to accurately determine the spectroscopic constants, bond dissociation energies, and heats of formation for the X1(2)II(3/2) states of the halogen oxides ClO, BrO, and IO, as well as their negative ions ClO-, BrO-, and IO-. After determining the frozen core, complete basis set (CBS) limit CCSD(T) values, corrections were added for core-valence correlation, relativistic effects (scalar and spin-orbit), the pseudopotential approximation (BrO and IO), iterative connected triple excitations (CCSDT), and iterative quadruples (CCSDTQ). The final ab initio equilibrium bond lengths and harmonic frequencies for ClO and BrO differ from their accurate experimental values by an average of just 0.0005 A and 0.8 cm-1, respectively. The bond length of IO is overestimated by 0.0047 A, presumably due to an underestimation of molecular spin-orbit coupling effects. Spectroscopic constants for the spin-orbit excited X2(2)III(1/2) states are also reported for each species. The predicted bond lengths and harmonic frequencies for the closed-shell anions are expected to be accurate to within about 0.001 A and 2 cm-1, respectively. The dissociation energies of the radicals have been determined by both direct calculation and through use of negative ion thermochemical cycles, which made use of a small amount of accurate experimental data. The resulting values of D0, 63.5, 55.8, and 54.2 kcal/mol for ClO, BrO, and IO, respectively, are the most accurate ab initio values to date, and those for ClO and BrO differ from their experimental values by just 0.1 kcal/mol. These dissociation energies lead to heats of formation, DeltaH(f) (298 K), of 24.2 +/- 0.3, 29.6 +/- 0.4, and 29.9 +/- 0.6 kcal/mol for ClO, BrO, and IO, respectively. Also, the final calculated electron affinities are all within 0.2 kcal/mol of their experimental values. Improved pseudopotential parameters for the iodine atom are also reported, together with revised correlation consistent basis sets for this atom.  相似文献   

16.
The C - H bond dissociation energies for naphthalene were determined using a negative ion thermochemical cycle involving the gas-phase acidity (Delta H (acid)) and electron affinity (EA) for both the alpha- and beta-positions. The gas-phase acidity of the naphthalene alpha- and beta-positions and the EAs of the alpha- and beta-naphthyl radicals were measured in the gas phase in a flowing after glow-triple quadrupole apparatus. A variation of the Cooks kinetic method was used to measure the EAs of the naphthyl radicals by collision-induced dissociation of the corresponding alpha- and beta-naphthylsulfinate adducts formed by reactions in the flow tube portion of the instrument. Calibration references included both pi and sigma radicals, and full entropy analysis was performed over a series of calibration curves measured at collision energies ranging from 3.5 to 8 eV (center-of-mass). The measured EAs are 33.0 +/- 1.4 and 31.4 +/- 1.0 kcal mol(-1) (1 kcal = 4.184 kJ) for the alpha- and beta-naphthyl radicals, respectively. The gas-phase acidities for naphthalene were measured by the DePuy silane cleavage method, which utilizes the relative abundances of aryldimethylsiloxides and trimethylsiloxide that result from competitive cleavages from a proposed penta coordinate hydroxysiliconate intermediate. The measured acidities are 394.0 +/- 5.0 and 397.6 +/- 4.8 kcal mol(-1) for the alpha- and beta- positions, respectively. The C - H bond dissociation energies calculated from the thermochemical cycle are 113.4 +/- 5.2 and 115.4 +/- 4.9 kcal mol(-1) for the alpha- and beta-positions, respectively. These energies are, to within experimental error, indistinguishable and are approximately the same as the first bond dissociation energy for benzene.  相似文献   

17.
The 2-azaphenalenyl radical 2 has been synthesized and characterized by ESR spectroscopy. Variable-temperature ESR measurements were carried out on both the phenalenyl (1) and the 2-azaphenalenyl (2) radicals. The phenalenyl radical 1 has the known propensity to dimerize at temperatures below 20 degrees C, but unexpectedly less so than originally reported. The first experimental measurement of bond dissociation enthalpy for the dimerization of the phenalenyl radical 1 was obtained in CCl(4) (11.34 +/- 0.11 kcal/mol) and toluene (9.8 +/- 0.7 kcal/mol). The 2-azaphenalenyl radical 2 does not show a propensity to dimerize over the measurable temperature range (220-330 K), but does so in the presence of Cu(hfac)(2) (hfac = hexafluoroacetylacetonate). The latter complex was characterized by X-ray crystallography.  相似文献   

18.
The structure and energetics of protonated p-benzoquinone (pBQ) have been investigated using high-pressure mass spectrometry and ab initio calculations. The experimental proton affinity of pBQ is 801.4 +/- 8.9 kJ/mol (191.5 +/- 2.1 kcal/mol) (1sigma) from bracketing measurements and hydration thermochemistry. This value is supported by theory and by analogies with related compounds. In its protonation chemistry, pBQ behaves as an aliphatic ketone, both structurally and energetically. The dissociation of the hydrate (pBQH(+)).(H(2)O) is characterized by DeltaH degrees (D) = 90.0 +/- 2.3 kJ/mol and DeltaS degrees (D) = 123.4 +/- 4.9 J/mol.K (95% confidence).  相似文献   

19.
New experimental results on the determination of the bond dissociation enthalpy (BDE) value of 3,5-di-tert-butylcatechol, a model compound for flavonoid antioxidants, by the EPR radical equilibration technique are reported. By measurement of the equilibrium constant for the reaction between 3,5-di-tert-butylcatechol and the 2,6-di-tert-butyl-4-methylphenoxyl radical, in UV irradiated isooctane solutions at different temperatures, it has been shown that the thermodynamic parameters for this reaction are DeltaH degrees = -2.8+/-0.1 kcal mol(-1) and DeltaS degrees = +1.3+/-0.2 cal mol(-1) K(-1). This demonstrates that the entropic variations in the hydrogen exchange reaction between phenols and the corresponding phenoxyl radicals are also negligible when one of the reacting species is a polyphenol and that the EPR radical equilibration technique also allows the determination of the Obond;H BDEs in intramolecularly hydrogen-bonded polyphenols. The BDE of 3,5-di-tert-butylcatechol (78.2 kcal mol(-1)) was determined to be identical to that of alpha-tocopherol. Through use of the group additivity rule, this piece of data was also used to calculate the strength of the intramolecular hydrogen bond between the hydroxyl proton and the oxygen radical centre in the corresponding semiquinone radical (5.6 kcal mol(-1)), which is responsible both for the excellent antioxidant properties of catechols and for the BDE of catechol (81.8 kcal mol(-1)). These values are in poor agreement with those predicted by DFT calculations reported in the literature (9.5 kcal mol(-1) and 77.6 kcal mol(-1), respectively). Extensive theoretical calculations indicate that the BDE of catechol is reproduced well (81.6 kcal mol(-1)) by use of diffuse functions on oxygen and the CCSD method.  相似文献   

20.
Gas-phase acidities (Delta H degrees (acid)) of lactones with ring sizes from four to seven have been measured on a Fourier transform ion cyclotron resonance mass spectrometer. Electron affinities (EAs) of the corresponding lactone enolate radicals were measured on a continuous-wave ion cyclotron resonance mass spectrometer, and the bond dissociation energies (BDEs) of the alpha C-H bonds were derived. In order of increasing ring size, Delta H degrees (acid) = 368.7 +/- 2., 369.4 +/- 2.2, 367.3 +/- 2.2, and 368.3 +/- 2.2 kcal/mol and BDE = 99.4 +/- 2.3, 94.8 +/- 2.3, 89.2 +/- 2.3, and 92.8 +/- 2.4 kcal/mol for beta-propiolactone, gamma-butyrolactone, delta-valerolactone, and epsilon-caprolactone, respectively. For their corresponding enolate radicals, EA = 44.1 +/- 0.3, 38.8 +/- 0.3, 35.3 +/- 0.3, and 37.9 +/- 0.6 kcal/mol. All of these lactones are considerably more acidic than methyl acetate, consistent with a dipole repulsion model. Both BDEs and EAs show a strong dependence on ring size, whereas Delta H degrees (acid) does not. These findings are discussed, taking into account differential electronic effects and differential strain between the reactant and product species in each reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号