首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Infrared spectroscopic imaging is a promising intraoperative tool which enables rapid, on-site diagnosis of brain tumors during neurosurgery. A classification model was recently developed using infrared spectroscopic images from thin tissue sections to grade malignant gliomas, the most frequent class of primary brain tumor. In this study the model was applied to 54 specimens from six patients with inhomogeneous gliomas composed of regions with different tumor density and morphology. The resection was controlled using neuronavigation which transfers the findings obtained by preoperative magnetic resonance imaging (MRI) into the operating field. For comparison, all specimens were independently evaluated by histopathology after hematoxylin and eosin staining. The infrared-derived grading agreed with histopathology and MRI findings for almost all specimens. With regard to histopathological assessment, sensitivities of 100% (22/22) and 93.1% (27/29) and specificities of 96.9% (31/32) and 88.0% (22/25) were achieved, depending on whether the classification was based on the predominant or maximal tumor grade, respectively, in the specimen. Altogether, in 98% (53/54) of all specimens the decision to continue or not continue tumor resection could have been made according to the infrared spectroscopic classification. This retrospective study clearly demonstrates that infrared spectroscopic imaging may help to define tumor margins intraoperatively and to detect high-grade tumor residues for achieving more radical tumor resection. MRT-guided tumor resection (left) is combined with infrared spectroscopy-based tissue classification (middle, right). With regard to histopathological assessment, sensitivities of 100% and 93.1% and specificities of 96.9% and 88.0% were achieved for 54 specimens. (TIF 47.1 KB)  相似文献   

2.
Wehbe K  Pineau R  Eimer S  Vital A  Loiseau H  Déléris G 《The Analyst》2010,135(12):3052-3059
Malignant gliomas are very aggressive tumors, highly angiogenic and invading heterogeneously the surrounding brain parenchyma, making their resection very difficult. To overcome the limits of current diagnostic imaging techniques used for gliomas, we proposed using FTIR imaging, with a spatial resolution from 6 to 10 μm, to provide molecular information for their histological examination, based on discrimination between normal and tumor vasculature. Differentiation between normal and tumor blood vessel spectra by hierarchical cluster analysis was performed on tissue sections obtained from xenografted brain tumors of Rag-gamma mice 28 days after intracranial implantation of glioma cells, as well as for human brain tumors obtained in clinics. Classical pathological examination and immunohistochemistry were performed in parallel to the FTIR spectral imaging of brain tissues. First on the animal model, classification of FTIR spectra of blood vessels could be performed using spectral intervals based on fatty acyl (3050-2800 cm(-1)) and carbohydrate (1180-950 cm(-1)) absorptions, with the formation of two clusters corresponding to healthy and tumor parts of the tissue sections. Further data treatments on these two spectral intervals provided interpretable information about the molecular contents involved in the differentiation between normal and tumor blood vessels, the latter presenting a higher level of fatty acyl chain unsaturation and an unexpected loss of absorption from osidic residues. This classification method was further successfully tested on human glioma tissue sections. These findings demonstrate that FTIR imaging could highlight discriminant molecular markers to distinguish between normal and tumor vasculature, and help to delimitate areas of corresponding tissue.  相似文献   

3.
Fourier transform infrared (FTIR) imaging has been used as a molecular histopathology tool on brain tissue sections after intracranial implantation and development of glioma tumors. Healthy brain tissue (contralateral lobe) as well as solid and diffuse tumor tissues were compared for their collagen contents. IR spectra were extracted from IR images for determining the secondary structure of protein contents and compared to pure product spectra of collagens (types I, III, IV, V, and VI). Multivariate statistical analyses of variance and correspondence factorial analysis were performed to differentiate healthy and tumor brain tissues as well as their classification according to their secondary structure profiles. Secondary structure profiles revealed that no collagen was present in healthy tissues; they are also significantly different from solid and diffuse tumors (p < 0.05). Solid and diffuse tumors could be discriminated with respect to the secondary structure profile of fibrillar and non-fibrillar collagens, respectively. We can thus propose to develop FTIR imaging for histopathology examination of tumors on the basis of collagen contents.  相似文献   

4.
The 40-60 pituitary human growth hormone (hGH) isoforms are so similar in their physico-chemical properties (charge, size, hydrophobicity) that the limited resolutions of chromatographic separation methodologies have not permitted most of them to be isolated. However, application of high-resolution preparative alkaline urea gradient PAGE has facilitated isolation of a disulfide-linked mercaptoethanol-resistant (MER) 45 kDa hGH dimer. Human pituitary extracts were separated by Sephadex G-100 chromatography under alkaline conditions. Pooled fractions containing MER-45 kDa hGH, as determined by SDS-PAGE, were then separated by Sephadex G-100 chromatography under acidic conditions followed by diethylaminoethyl (DEAE) anion-exchange chromatography. Pooled DEAE fractions containing MER-45 kDa hGH and other hGH isoforms were then separated by preparative electrophoresis in an alkaline polyacrylamide gradient (5-20%) slab gel containing 8 M urea into five distinct protein zones. One electroeluted zone contained pure MER-45 kDa hGH. The dimeric hGH isoform was immunoreactive at low concentrations (effective dose to produce 50% response (ED(50)) +/- S.E. = 58 +/- 5.00 pM) in a hGH radioimmunoassay, similar to that of standard monomeric hGH (ED(50) +/- S.E. = 22.93 +/- 3.90 pM), indicating that is was conformationally intact. Alkaline urea gradient PAGE is a valuable tool for preparative separation of structurally similar proteins such as isoforms of the hGH family.  相似文献   

5.
In order to produce human growth hormone (hGH) in the milk of transgenic mice, two expression vectors for hGH differing in their 3′ flanking sequences were constructed by placing the genomic sequences of hGH gene under the control of the rat Β-casein gene promotor. The 3′ flanking sequences of the expression constructs were derived from either the hGH gene (pBCN1GH) or the rat Β-casein gene (pBCN2GH). Transgenic lines bearing pBCN1GH expressed hGH more efficiently than those bearing pBCN2GH in the milk (19-5500 Μg/mL vs 0.7-2 Μg/mL). In particular, one of the BCN1GH lines expressed hGH as much as 5500 ±620 Μg/mL. Northern blot analysis showed that the transgene expression was specifically confined to the mammary gland and developmentally regulated like the endogenous mouse Β-casein gene in the mammary gland. However, a low level of nonmammary expression was also detected with more sensitive assay methods. In conclusion, the rat Β-casein/hGH fusion gene could direct an efficient production of hGH in a highly tissue-and stage-specific manner in the transgenic mice and the 3′ flanking sequences of hGH gene had an important role for the efficient expression.  相似文献   

6.
Human growth hormone(hGH), a classic therapeutic protein, which promotes growth and wound healing, is released from the pituitary gland. As a protein drug, its short half-life is its main barrier to therapeutic efficacy. Various strategies have been designed to prolong its serum half-life, the most common of which is the conjugation with polyethylene glycol(PEG), as this has been shown to significantly extend protein's serum half-life. However, PEGylation often results in random conjugation, which can lead to impaired protein function and hinder purification, characterization and evaluation of the PEGylated protein. Therefore, site specific PEGylation is a promising direction for PEG-protein conjugation. Here we took advantages of the mutated sortase A(7M) enzyme, which can enzymatically ligate the universal α-amino acids to a C-terminal tagged protein. This then allows specific modification of the C-terminal of hGH with PEG. This site-specific bound PEG-hGH has similar efficacy, receptor binding and cell proliferation as wild-type hGH; however, pharmacokinetic analysis demonstrates that its serum half-life is almost 24 times that of wild-type hGH. Herein, we provided a promising advancement in the development of site specific PEGylated therapeutic proteins.  相似文献   

7.
The possibilities of using laser-induced fluorescence for tissue diagnostics are discussed. The tissue types investigated are malignant tumors and atherosclerotic lesions. Studies with natural autofluorescence as well as with fluorescent tumor markers are included in this paper. Fluorescence emission and decay data are presented for some tissue chromophores contributing to tissue autofluorescence. Optical spectroscopic characteristics of fluorescent malignant tumor markers are analyzed and instrumental designs for clinical applications are discussed. Images recorded with a multicolor fluorescence imaging system developed in Lund are presented.  相似文献   

8.
The cellular localization of D-alanine (D-Ala) in the rat pituitary gland, the tissue containing the highest amount of D-Ala, has been clarified for the first time by enantioselective visualization of D-Ala using our own established mouse monoclonal antibody against D-Ala. D-Ala immunopositive cells were present predominantly in the anterior lobe, while no intense staining was observed in the intermediate and posterior lobes. The anterior pituitary gland contains five types of cells secreting specific hormones (growth hormone, adrenocorticotropic hormone (ACTH), gonadotropic hormone, prolactin, and thyroid-stimulating hormone), and the double staining results indicated that D-Ala is localized to the ACTH-secreting cells. The localization of D-Ala is clearly different from that of D-aspartic acid (D-Asp), which is observed in the prolactin cells. Considered together with our previous findings that D-Ala is localized to the insulin-secreting beta-cells in the pancreas, and both ACTH and insulin are typical regulatory hormones of blood glucose, D-Ala is suggested to have some functional relationships to blood glucose level regulation in mammals.  相似文献   

9.
Macromolecules accumulate in solid tumors and can thus be used as carriers for the delivery of attached contrast agents to tumors. We report the synthesis and use of serum protein-dye conjugates consisting of transferrin (Tf) or human serum albumin (HSA) and an indotricarbocyanine (ITCC) derivative as contrast agents for the optical imaging of tumors. The compounds were characterized with respect to their photophysical properties and tested in vitro for their ability to bind to tumor cells and in vivo for their potential to delineate experimental tumors. In contrast to HAS-ITTC, Tf-ITCC showed receptor-mediated uptake by HT29 human colon cancer cells in vitro. After intravenous injection into HT29 tumor-bearing nude mice both compounds induced increased fluorescence contrast of tumors in vivo. After 24 h the contrast between tumor and normal tissue was significantly higher for Tf-ITCC than for HAS-ITCC. Dye-induced fluorescence was found to be predominantly located in perinecrotic areas of the tumor. Furthermore, Tf-ITCC produced fluorescence of viable tumor cells, whereas HAS-ITCC fluorescence was recorded along connective tissue. We conclude that ITCC-labeled Tf and HSA can serve as macromolecular contrast agents for the optical imaging of tumors, with Tf-ITCC showing higher efficiency.  相似文献   

10.
Many muscular diseases result from abnormal organization of connective tissue and/or collagen network formation. Only a few molecular imaging techniques are able to analyze this collagen network by differentiating collagen types. In this study, FT-IR spectroscopy was used to analyze type I and IV collagens, the most important compounds of which are perimysium and endomysium, respectively. Secondary structure of collagen types was determined by curve-fitting the 1,700–1,480 cm−1 spectral interval. Type I collagen could be differentiated from type IV by its higher amounts of triple helix and α-helix, but lower amounts of β-sheets (P < 0.01). FT-IR imaging was then used to determine structural features of perimysium and endomysium collagen network in bovine Flexor carpi radialis muscle. Secondary structure of proteins contained in perimysium and endomysium was found to be very close to type I and IV collagens, respectively. FT-IR spectroscopy and imaging are thus analytical tools that might be used for investigating biodistribution and assembly of collagen types in connective tissues. Figure Visible (left) and full spectral FT-IR (right) images of skeletal muscle tissue section (16 μm) exhibiting a vertical arrangement of fibers. + and × in FT-IR image show selected positions to obtain FT-IR spectra of perimysium and endomysium, respectively  相似文献   

11.
Metastatic brain tumors represent a significant proportion of tumors identified intraoperatively. A rapid diagnostic method, circumventing the need for histopathology studies, could prove clinically useful. As many spectroscopic studies have shown ability to differentitate between different tumor types, this technique was evaluated for use within metastatic brain tumors. Spectrochemical approaches [Raman and attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) spectroscopy] were applied to determine how readily they may identify the primary site for the metastatic tumor. Metastases were from primary adenocarcinomas of lung (n?=?7) and colorectum (n?=?7), and for comparison, metastatic melanoma (n?=?7). The objective was to determine if Raman or ATR-FTIR spectroscopy could delineate the origin of the primary tumor. The results demonstrate that there are marked similarities between the two adenocarcinoma groups and whilst Raman and ATR-FTIR can distinguish the three groups with limited success, classification accuracy is greatly improved when combining the adenocarcinoma groups. The use of such techniques in the clinical setting is more likely to be found intraoperatively, determining the presence of a tumor and suggesting the tumor class; however, traditional histopathology would still be needed to identify the primary origin of the tumor.  相似文献   

12.
Holton SE  Walsh MJ  Bhargava R 《The Analyst》2011,136(14):2953-2958
The tumor microenvironment, or stroma, is chemically and morphologically modified during carcinoma progression. The predominant cell type in the stroma, the fibroblast, maintains collagen properties in normal tissue and often transformed during tumor progression. Biochemical changes within fibroblasts upon initial cancer activation, however, are relatively poorly defined. Here, we hypothesized that Fourier transform infrared (FT-IR) spectroscopic imaging could potentially be employed to examine these early transformations. Further, we employ attenuated total reflectance (ATR) microscopy to characterize subcellular spectra and their changes upon transformation. We characterized fibroblast transitions upon stimulation with both a molecular agent and a carcinoma-mimicking cellular co-culture system. Changes were predominantly observed in the 1080 cm(-1) and 1224 cm(-1) peak absorbance, commonly associated with nucleic acids, as well as in the band at 2930 cm(-1) associated with the C-H stretching of proteins in the cytoplasmic compartment. In conclusion, biochemical changes in cancer-associated fibroblasts that express α-SMA are dominated by the cytoplasm, rather than the nucleus. This ensures that spectral changes are not associated with proliferation or cell cycle processes of the cells and the cells are undergoing a true phenotypic change denoted by protein modifications in the cell body.  相似文献   

13.
The diagnostic ability of optical spectroscopy techniques, including near-infrared (NIR) Raman spectroscopy, NIR autofluorescence spectroscopy and the composite Raman and NIR autofluorescence spectroscopy, for in vivo detection of malignant tumors was evaluated in this study. A murine tumor model, in which BALB/c mice were implanted with Meth-A fibrosarcoma cells into the subcutaneous region of the lower back, was used for this purpose. A rapid-acquisition dispersive-type NIR Raman system was employed for tissue Raman and NIR autofluorescence spectroscopic measurements at 785-nm laser excitation. High-quality in vivo NIR Raman spectra associated with an autofluorescence background from mouse skin and tumor tissue were acquired in 5 s. Multivariate statistical techniques, including principal component analysis (PCA) and linear discriminant analysis (LDA), were used to develop diagnostic algorithms for differentiating tumors from normal tissue based on their spectral features. Spectral classification of tumor tissue was tested using a leave-one-out, cross-validation method, and the receiver operating characteristic (ROC) curves were used to further evaluate the performance of diagnostic algorithms derived. Thirty-two in vivo Raman, NIR fluorescence and composite Raman and NIR fluorescence spectra were analyzed (16 normal, 16 tumors). Classification results obtained from cross-validation of the LDA model based on the three spectral data sets showed diagnostic sensitivities of 81.3%, 93.8% and 93.8%; specificities of 100%, 87.5% and 100%; and overall diagnostic accuracies of 90.6%, 90.6% and 96.9% respectively, for tumor identification. ROC curves showed that the most effective diagnostic algorithms were from the composite Raman and NIR autofluorescence techniques.  相似文献   

14.
This study assessed the diagnostic potential of Raman spectroscopic mapping by evaluating its ability to distinguish between normal brain tissue and the human intracranial tumors gliomas and meningeomas. Seven Raman maps of native specimens were collected ex vivo by a Raman spectrometer with 785 nm excitation coupled to a microscope with a motorized stage. Variations within each Raman map were analyzed by cluster analysis. The dependence of tissue composition on the tissue type in cluster averaged Raman spectra was shown by linear combinations of reference spectra. Normal brain tissue was found to contain higher levels of lipids, intracranial tumors have more hemoglobin and lower lipid to protein ratios, meningeomas contain more collagen with maximum collagen content in normal meninges. One sample was studied without freezing. Whereas tumor regions did not change significantly, spectral changes were observed in the hemoglobin component after snap freezing and thawing to room temperature. The results constitute a basis for subsequent Raman studies to develop classification models for diagnosis of brain tissue.  相似文献   

15.
Detecting recombinant human growth hormone (rhGH) abuse in sport remains one of the major challenges in doping control. We have compared two different approaches to detect the hGH (human growth hormone) abuse. The first measures the concentrations of the 22 kDa hGH isoform (rec assay) and pituitary derived isoforms (pit assay) and a ratio rec/pit is obtained. The second measures the concentrations of 22 and 20 kDa hGH isoforms and also a ratio 22/20 kDa is derived.  相似文献   

16.
中红外光纤技术用于口腔肿瘤在体原位检测的研究   总被引:2,自引:1,他引:1  
肿瘤是严重威胁人类健康和生命的疾病,早期诊断和及时治疗是提高肿瘤病人存活率的重要因素,肿瘤的发生和发展一般可分为3个阶段:(1)基因突变;(2)生物分子组成和结构发生改变;(3)细胞和组织形态发生变化,目前常用的影像学方法只能检测较大的肿块,组织标本的病理诊断法需在  相似文献   

17.
Radioimmunoassay (RIA) of human growth hormone (hGH) using125I-labeled tracer prepared from DNA recombinant hGH (r-hGH) and characterization of the tracer in the assay system are described. The radioiodination of r-hGH resulted in high yield of immunoreactive tracer. The immunoreactive fraction could be purified by gel-filtration on sephadex G-75. The quality of radioiodinated tracer of r-hGH has been found to be same as that of the tracer obtained from pituitary hGH (p-hGH) with respect to immunoreactivity, assay sensitivity and RIA standard curve parameters.  相似文献   

18.
The potential of Raman spectroscopy for ex vivo and in vivo classification of normal and glioblastoma brain tumor development was investigated. High-quality spectra of normal and tumor tissues were obtained using a portable Raman spectrometer coupled to a microprobe with a signal integration time of 5 s. Ex vivo results demonstrated that by using the biochemical information contained in the spectra, we were able to distinguish between normal brain features (white and gray matter), invasion, and tumor tissues with a classification accuracy of 100%. Differences between these features resulted from variations in their lipid signal contributions, which probably reflect differences in the level of myelinization. This finding supports the ability of in vivo Raman spectroscopy to delineate tumor margins during surgery. After implanting C6 cells in rat brain, we monitored, in vivo, the development of glioblastoma tumor from days 0 to 20 post-implantation (PI). The classification exhibited a clear separation of the data into two clusters: one cluster was associated with normal brain tissues (cortex), and the second was related to data measured from tumor evolution. The second cluster could be divided into two subclusters, one associated with tumor tissue from 4 to 13 days PI and the second related to tumor tissue from 15 to 20 days PI. Histological analysis reveals that the differences between these two subclusters are: the presence of a massive infiltration zone in the brain tissue from 4 to 13 days PI, and; a maturation of the tumor characterized by the appearance of edematous and necrotic zones, as well as a diminution in the proliferative and invasive area, from 15 days. This work demonstrates the potential of Raman spectroscopy to provide diagnostic information for the early detection of tumors in vivo.  相似文献   

19.
针对抗肿瘤小分子药物靶向性差、疗效低和毒副性大等缺陷,我们以Y型分子筛(YMS)为基体、阿霉素(DOX)为药物模型,通过pH调控,借助氢键和范德华力等物理作用力制备得到高负载Y型分子筛纳米药物体系(YMS?DOX)。采用UV?Vis、FT?IR、粒径和电位测试及荧光光谱证实YMS?DOX成功制备,且DOX的负载率可高达99.61%。体外药物释放测试发现YMS?DOX具有pH响应释放特性,在肿瘤环境中(pH=4.5)的药物释放量为正常生理环境(pH=7.4)中的3.8倍,表明其具有良好的药物输送特性。此外,利用流式细胞术和MTT测试法探究了YMS?DOX对乳腺癌细胞(MM?231)和树突细胞(DC)的细胞凋亡和毒性,结果表明YMS?DOX可以诱导肿瘤细胞凋亡,且可降低对正常细胞的毒副作用。  相似文献   

20.
Solution-enhanced dispersion by supercritical fluids (SEDS) was applied to produce nano-sized recombinant human growth hormone (hGH) particles. Ethanol was used to help the supercritical carbon dioxide to extract water from the aqueous protein solution. Various sizes of hGH nanoparticles were successfully prepared with a narrow particle size distribution from aqueous ethanol solution without using any additive. The theoretical particle sizes were deduced from the calculated droplet sizes based on a modified Jasuja’s equation. The calculated mean particle sizes and the experimentally obtained ones were compared and the results showed an excellent correlation coefficient (R 2) of 0.995. Figure Distribution of hGH Nano-particles  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号