首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
掺杂LiF的ESR谱和ENDOR谱研究   总被引:2,自引:0,他引:2  
LiF:Mg,Cu热释光(TL)磷光体在γ辐照后产生F0顺磁中心,其g因子为gxx=2.0030,gyy=2.0450,gzz=2.0251,裂分为Axx=511.04G,Ayy=505.42G,Azz=507.26G。F0中心的浓度随Mg++浓度的增加而下降。磷光体的ENDOR谱显示F0中心附近有铜核存在。照射前和照射后24h测量均未发现Cu++的ESR谱,表明铜是以Cu+形式掺入的,照射并未引起Cu+离子化合价的改变。LiF:Mg,Cu,P在γ辐照前具有轴对称的Cu++离子的ESR谱,辐照后产生了O-空穴中心和PO32-自由基,改变了Cu++的环境,使Cu++的谱发  相似文献   

2.
The dependence of LiF:Mg,Cu,P samples with various concentrations of Mg on sintering temperatures was investigated to find a new dosimeter. The influence of high sintering temperatures on LiF:Mg,Cu,P chips depends strongly on Mg concentrations. The height of the main peak versus the sintering temperatures exhibits a maximum, the position of which varies between 690 °C and 750 °C, depending on the Mg concentration in the range studied. The high temperature peaks of LiF:Mg,Cu,P for various Mg concentrations reduce basically when the sintering temperature is increased. LiF:Mg,Cu,P is much less sensitive than LiF:Mg,Cu,Si to sintering temperature. LiF:Mg,Cu,P with 0.6 mol% of Mg can be re-used at annealing temperature of 260 °C, regardless of the sintering temperature. It was found that the optimum concentration is Mg: 0.6 mol%, the optimum sintering temperature is 750 °C, considering that LiF:Mg,Cu,P with a low residual signal and good sensitivity can be re-used at annealing temperature of 260 °C and produced in a large scale. The new optimum LiF:Mg,Cu,P formation has 52 times higher than that of the TLD-100, and an extremely low residual signal of 0.07% without an initialization readout procedure.  相似文献   

3.
Newly developed LiF:Mg,Cu,Si was found to exhibit no significant fading on room temperature post-irradiation storage up to several months. In view of the wide variation in the reported data of fading of LiF:Mg,Cu,P exhibiting glow curve structure similar to that of LiF:Mg,Cu,Si, a study of the effect of post-irradiation storage and thermal treatments on the deconvoluted glow peaks of LiF:Mg,Cu,Si was undertaken. The decay of inseparable peak-3 by post-irradiation storage or thermal treatments did not indicate any rearrangement in the trap occupation that would affect the response of the main peak (peak-4). A post-irradiation treatment at 125 °C for 10 min was found to be the optimum to eliminate the lower temperature peaks.  相似文献   

4.
The glow curve structures for LiF:Mg,Cu,Na,Si TL detectors with various dopant concentrations and sintering temperatures were investigated for the improvement of the glow curve structure and sensitivity of the TL detector. The dopant concentrations were varied over the following ranges: Mg (0–0.25 mol%), Cu (0–0.07 mol%), Na and Si (0–1.5 mol%). With increasing Cu concentration, the intensity of the main peak was intensified and reached a maximum at a concentration of 0.05 mol%. The high-temperature peak was reduced. The dependency of the main peak intensity on the Mg concentration exhibits a sharp maximum at 0.2 mol%. The intensity of the high-temperature peak tends to rise slightly with increasing Mg concentration. It was found that the optimum concentrations of the dopants in the LiF:Mg,Cu,Na,Si TL material are Mg: 0.2 mol%, Cu: 0.05 mol%, Na and Si: 0.9 mol%. The dependency of the main peak intensity on sintering temperature exhibits a very sharp maximum at 830°C. The high-temperature peak was rapidly reduced after 825°C.  相似文献   

5.
The preparation method and some dosimetric properties of the new LiF:Mg,Cu,Si discs are presented. The effect of heat treatments on LiF:Mg,Cu,Si was investigated. The shape of the glow curve for LiF:Mg,Cu,Si is similar to that for standard LiF:Mg,Cu,P (GR-200A), and shows minimal differences when annealed in the range from 260 °C to 290 °C for 10 min. The TL sensitivity for LiF:Mg,Cu,Si is much lower than that for GR-200A, but is 35 times larger than that for TLD-100 and is slightly higher than that for HMCP. The height of the high-temperature peaks for LiF:Mg,Cu,Si is not only lower than that for GR-200A, but also lower than that for HMCP. The glow curve shape of LiF:Mg,Cu,Si annealed at 260 °C for different times shows minimal differences and TL response remains stable. These results indicate that the new LiF:Mg,Cu,Si disc has a good stability to thermal treatments and a lower residual TL signal.  相似文献   

6.
Thermoluminescence (TL) properties of LiF: Mg, Cu, Si phosphor prepared in multicrystalline form using edge defined film fed growth (EFG) technique has been investigated. The effect of preparation route on TL properties and thermal stability has been studied. To improve the TL dosimetry properties, phosphor is subjected to different annealing temperatures ranging from 250 °C to 450 °C. The shape of the glow curve structure and peak temperature remains similar at different annealing temperatures, however peak intensities vary. The consistency in the glow curve structure with annealing temperature elucidate that TL trapping states are stable in nature. Thermal annealing at 300 °C for 10 min gives maximum TL intensity with main dosimetry peak at 209 °C. The TL intensity of the main dosimetry peak is increased by a factor of five as compared to as-grown crystal. The thermal stability of LiF: Mg, Cu, Si is found to be better than LiF: Mg, Cu, P. Trapping parameters are calculated to have an insight study of defect states. A simple glow curve structure, tissue equivalency, thermal stability, low residual signal, linear response and reusability makes LiF: Mg, Cu, Si a suitable phosphor for radiation therapy, radio diagnostics and personnel dosimetry applications.  相似文献   

7.
Efforts are aimed at finding a method that could serve TL dosimetric measurements in the range of low-dose but carried out in an environment with elevated temperature. The temperature at the position of the maximum intensity of LiF:Mg,Cu,P was about 280 °C when annealed at 460 °C. LiF:Mg,Cu,P with a maximum intensity at 280 °C should present good thermal stability. The TL intensity of LiF:Mg,Cu,P with a maximum intensity at 280 °C was about 54% of the standard LiF:Mg,Cu,P, it should have a minimum measurable dose in the range of micro-Gy. LiF:Mg,Cu,P with a maximum intensity at 280 °C could be re-used by the 660 °C/30 min annealing, followed by 270 °C/20 min, 240 °C/10 min and 460 °C/30 min. It's possible for LiF:Mg,Cu,P to be extended application for low dose test in an environment with elevated temperature.  相似文献   

8.
Several thermal treatments in the temperature range from 270 °C to 320 °C (each of 10 min) were tested as a final preparation procedure of LiF:Mg,Cu,Si to improve the protocol of TL readout with less residual signal for the LiF:Mg,Cu,Si TLD. This high sensitivity LiF:Mg,Cu,Si TLD exhibited thermal stability much better than that of the well known LiF:Mg,Cu,P. For LiF:Mg,Cu,Si, a readout temperature up to 300 °C did not affect the TL sensitivity and glow curve structure for 12 cycles of exposure and readout following an initial thermal treatment at 295 °C for 10 min. The residual TL signal also remained negligible.  相似文献   

9.
The dependence of thermoluminescence (TL) of LiF:Mg,Cu,Si on sintering temperatures and dopants concentrations were investigated. The dependency of the TL in LiF:Mg,Cu,Si on sintering temperature exhibits a very sharp maximum at 830 °C. LiF:Mg,Cu,Si is much too sensitive than LiF:Mg,Cu,P to sintering temperature. The glow curve and the TL sensitivity depend on the concentration of Mg, Cu and Si, showing a distinct maximum for certain concentrations of these impurities. Mg seems to be the most essential dopant, as very small changes of the Mg content strongly influence both the glow curve and the TL sensitivity. Si is the main activator responsible for TL emission. The stability to heat treatments in LiF:Mg,Cu,Si was influenced greatly by Mg concentrations. The thermal instability in LiF:Mg,Cu,Si is caused not by Cu and Si but Mg ion state change. It was found that the optimum concentrations are Mg:0.6 mol%, Cu:0.03 mol% and Si:0.9 mol% for this material, which showed the best stability to heat treatment.  相似文献   

10.
We investigated the thermal degradation of LiF:Mg,Cu,P (NTL-250) and LiF:Mg,Cu,Si (MCS) for the development of TL sheet. By thermogravimetry and differential scanning calorimetry (TG-DSC), the exothermic reaction was observed between 320 °C and 400 °C in MCS as well as NTL-250. The heat value of MCS was twice as large as that of NTL-250. This ratio corresponded with that of Mg amount in these TL materials measured by ICP-OES (inductively-coupled plasma optical emission spectrometry). X-ray diffraction (XRD) measurements were also carried out, and the peaks of MgF2 phase were also observed in degraded MCS sample as well as NTL-250. Moreover, X-ray absorption near-edge structures (XANES) of Cu in these LiF TLDs were measured. The valences of Cu did not change before and after degradation. It indicates that the thermal degradation is caused by not Cu but Mg ion state change. The exothermic reaction is possible caused by the stabilization reactions, and then it was expected to correspond with MgF2 precipitation. From these results, we concluded that the thermal degradations of these LiF TLDs are caused by the precipitation of MgF2.  相似文献   

11.
The behaviour of LiF:Mg,Cu,P and LiF:Mg,Ti detectors at ultra-high doses up to 1 MGy, has been investigated. The presence of the ultra-high-temperature peak (450 °C) of reproducible properties was observed in various batches of LiF:Mg,Cu,P, confirming earlier findings. The results indicate that this peak is not an effect of random impurities nor intrinsic effects of LiF, but it is rather connected with the doping.A parameter called ultra-high temperature ratio (UHTR) was defined in order to quantify the observed changes of LiF:Mg,Cu,P glow-curve shape at very high doses and very high temperatures. The use of this parameter allows to determine an absorbed dose in the range from 1 kGy to 1 MGy. This new method of high-dose dosimetry makes LiF:Mg,Cu,P a unique dosimeter, which is capable to cover at least 12 orders of magnitude of dose range: from a microgray to a megagray.  相似文献   

12.
Long term study of Harshaw TLD LiF has been performed in this work. The study is carried out over a period of 24 months at storage temperatures of 0 °C, 20 °C and 40 °C using more than 3500 dosimeters. The length and variations of this study may be the most comprehensive study published to date. The dosimeters are HarshawTLD LiF based cards and extremity dosimeters, which include LiF:Mg,Ti and LiF:Mg,Cu,P materials in their different isotopes, sizes and forms. There are three parts in this study: material fade in sensitivity and in signal; lower limit of detection (LLD) and uncertainty; and glow curve peaks and sensitivity change over 24 months. Part I was presented at the SSD15 (15th International Conference on Solid State Dosimetry) in Delft. This paper is the continuous work focused on Part II – the lower limit of detection and uncertainty analysis. The detailed results of each case are provided.  相似文献   

13.
《Radiation measurements》2007,42(4-5):582-585
The dose response of three LiF TLDs: standard LiF:Mg,Ti (denoted MTS), high-sensitive LiF:Mg,Cu,P (MCP) and a recently developed in Kraków version of LiF:Mg,Ti with modified activator composition (MTT) and increased high-LET response was measured. The TLDs have been exposed to 60Co gamma-rays, up to dose of 10 000 Gy, i.e. beyond saturation dose of the main dosimetric peaks, which corresponds to ca. 1000 Gy. The measured glow-curves were deconvolved into separate peaks with first order kinetic function (using self-developed GlowFit software). The dose response of the main peaks was found to be supralinear for MTS and sublinear for MCP detectors, as expected. The dose response of MTT was found to be even more supralinear than that of MTS. An interesting effect has been observed with regard to glow-curve shape of MCP detectors. Up to a dose of 1 kGy it remains practically unchanged, while for higher doses a strong growth of high-temperature peaks is observed. In the same dose region a decrease of the main peak of MCP with increasing dose is observed, unlike LiF:Mg,Ti detectors.  相似文献   

14.
The available experimental data on the relative thermoluminescent efficiency of the LiF:Mg,Ti dosimetric peaks for protons are contradictory. There are several reports showing that the efficiency exceeds unity by even more than 30%, however, many others show the efficiency close to unity or even lower. These contradictory data might be a result of the real variability of TLD properties or of not perfectly reproduced experimental conditions.In an attempt to resolve this issue, the efficiency of 16 batches of LiF:Mg,Ti (MTS) detectors for 60 MeV protons produced at the IFJ Kraków over the last 20 years was measured. All values of the relative TL efficiency were found to exceed unity significantly, with an average of 1.09. Dispersion between different batches was very low, all data were within 4% of the mean value.In second part of experiment the dependence of the relative efficiency of LiF:Mg,Ti and LiF:Mg,Cu,P detectors on proton energy was determined. The efficiency for LiF:Mg,Ti dosimetric peaks was found to have a maximum of 1.20 at about 20 MeV. For LiF:Mg,Cu,P the relative efficiency decreases systematically with decreasing proton energy, from 0.96 at 56 MeV, to 0.61 at 11 MeV.  相似文献   

15.
Nanocrystalline LiF:Mg, Cu, P of rod shape (about 30-40 nm in diameter and 0.3-0.5 μm in length) has been prepared by the chemical co-precipitation method. Thermoluminescence (TL) and dosimetric characteristics of the nanocrystalline phosphor are studied and presented here. The formation of the material was confirmed by the X-ray diffraction (XRD). Its shape and size were also observed by transmission electron microscope (TEM). The TL glow curve of the nanocrystalline powder shows a single peak at 410 K along with four overlapping peaks of lesser intensities at around 570, 609, 638 and 663 K. The observed TL sensitivity of the prepared nanocrystalline powder is less than that of the commercially available “Harshaw TLD-700H hot-pressed chips” at low doses but it still around three times more than that of LiF:Mg, Ti (TLD-100) phosphor. The 410 K peak of the nanomaterial phosphor shows a very linear response with exposures increasing up to very high values (as high as 10 kGy), where all the other thermoluminesent dosimeters (TLD) phosphors show saturation. This linear response over a large span of exposures (0.1 Gy-10 kGy) along with negligible fading and its insensitivity to heating treatments makes the nanocrystalline phosphor useful for its application to estimate high exposures of γ-rays. The ‘tissue equivalence’ property of this material also makes it useful over a wide range of high-energy radiation.  相似文献   

16.
The widely known LiF TL detectors: LiF:Mg,Ti (MTS-N) and LiF:Mg,Cu,P (MCP-N), were investigated with respect to their OSL properties. It was found that both materials exhibit quite substantial OSL sensitivity. In particular, in the case of LiF:Mg,Cu,P this sensitivity was very high, significantly exceeding that of BeO, the standard OSL dosimetric material. LiF:Mg,Cu,P could be a very promising candidate for application in dosimetry, if not for the fading, which was found to be quite high, reaching nearly 80% loss of the signal within 60 h. The OSL signal intensity shows a correlation with the peak 2 of the TL glow curves indicating that the same trapping sites are responsible for both processes. Peak 2 of LiF:Mg,Ti shows a peculiar property, that blue light stimulation removes only about half of its initial intensity, disregarding the duration of stimulation. This suggests, that this peak may have a composite structure and originates from both light-sensitive and light-insensitive trapping centres.  相似文献   

17.
18.
The dose response of the TL emission spectra of an LiF:Mg,Ti (TLD-100) sample and three LiF:Mg,Ti samples with different impurity concentrations (0–6 ppm Ti and 80–100 ppm Mg) have been measured. At a dose less than 22 Gy the emission spectrum of the TLD-100 sample comprises one emission band at 420 nm. The sample without Ti shows also one emission band but now at 620 nm. The spectra of the other two samples comprises two emission bands at 420 nm and 620 nm of which the intensity of the 420 nm band increases with increasing Ti concentration. The dose response of the glow peaks is different for peaks at different temperatures and emission bands. From these observations it can be concluded than in LiF:Mg,Ti at least some of the traps and luminescent centers are coupled.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号