首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated the reactive uptake of NO(3) (an important night-time oxidant in the atmosphere) on binary mixtures containing an unsaturated organic (methyl oleate) and saturated molecules (diethyl sebacate, dioctyl sebacate, and squalane) which we call matrix molecules. These studies were carried out to better understand the reactivity of unsaturated organics in multicomponent and multiphase atmospheric particles. For liquid binary mixtures the reactivity of methyl oleate depended on the matrix molecule. Assuming a bulk reaction, H(matrix)√(D(matrix)k(oleate)) varied by a factor of 2.7, and assuming a surface reaction H(matrix)(S)K(matrix)(S)k(oleate)(S) varied by a factor of 3.6, where H(matrix)√(D(matrix)k(oleate) and H(matrix)(S)K(matrix)(S)k(oleate)(S) are constants extracted from the data using the resistor model. For solid-liquid mixtures, the reactive uptake coefficient depended on exposure time: the uptake decreased by a factor of 10 after exposure to NO(3) for approximately 90 min. By assuming either a bulk or surface reaction, the atmospheric lifetime of methyl oleate in different matrices was estimated for moderately polluted atmospheric conditions. For all liquid mixtures, the lifetime was in the order of a few minutes (with an upper limit of 35 min). These lifetimes can be used as lower limits to the lifetimes in semi-solid mixtures. Our studies emphasize that the lifetime of unsaturated organics (similar to methyl oleate) is likely short if the particle matrix is in a liquid state.  相似文献   

2.
The inhomogeneous re-crystallization process of matrix materials is the major concerns associated with matrix assisted laser desorption/ionization (MALDI) analysis. We describe here the approach termed compressed matrix thin film (CMTF) in order to make a uniform matrix deposition. In this approach, solid matrix particles are compressed under 10 MPa of pressure by a compressor that is regularly used in infrared spectroscopic analysis. Then aqueous samples can be deposited on the surface of the matrix film. Major advantages of the CMTF approach are summarized as follows. (1) Reproducible sample preparation procedure. Size and thickness of matrix thin films can be controlled by using a fixed mold.force and known amount of matrix materials. (2) Significantly decreased shot-to-shot variations and enhanced reproducibility. (3) Tolerance for in situ salt washing. Because matrix materials are hydrophobic, salts can be washed away while proteins or peptides are retained on the surface of matrix thin films through hydrophobic interactions. (4) Improved sensitivity. The hydrophobic coating of MALDI sample plate by matrix thin films prevents the spreading of samples across the plate and confines analytes to a small area, leading to increased local concentration. (5) A new means for tissue analysis. Tissue sections can be directly transferred to the uniform surface of matrix materials for reproducible and quantitative comparison of different molecules in different localization. The proposed CMTF should be an enabling technique for mass spectrometric analysis with improved correlations between signal intensities and sample quantities.  相似文献   

3.
We report the first measurements of the reactive uptake of NO(3) with condensed-phase aldehydes. Specifically, we studied NO(3) uptake on solid tridecanal and the uptake on liquid binary mixtures containing tridecanal and saturated organic molecules (diethyl sebacate, dioctyl sebacate, and squalane) which we call matrix molecules. Uptake on the solid was shown to be efficient, where γ = (1.6 ± 0.8) × 10(-2). For liquid binary mixtures the reactivity of aldehyde depended on the matrix molecule. Assuming a bulk reaction, H(matrix)√(D(matrix)k(2°,aldehyde)) varied by a factor of 2.6, and assuming a surface reaction H(matrix)(S)K(matrix)(S)k(2°,aldehyde)(S) varied by a factor of 2.9, where H(matrix)√(D(matrix)k(2°,aldehyde)) and H(matrix)(S)K(matrix)(S)k(2°,aldehyde)(S) are constants extracted from the data using the resistor model. By assuming either a bulk or surface reaction, the atmospheric lifetimes for aldehydes were estimated to range from 1.9-7.5 h. We also carried out detailed studies of N(2)O(5) uptake kinetics on alcohols. We show that uptake coefficients of N(2)O(5) for five different organics at 293 K varied by more than 2 orders of magnitude, ranging from 3 × 10(-4) to 1.8 × 10(-2). We show that the uptake coefficients correlate with √(D(alcohol)(OH concentration)) but more work is needed with other alcohols to completely understand the dependence. Using this kinetic data we show that the atmospheric lifetime of alcohols with respect to N(2)O(5) heterogeneous chemistry can vary from 0.6-130 h, depending on the physical and chemical properties of the organic liquid.  相似文献   

4.
This article describes the fabrication and characterization of a novel magnetic poly(glycidyl methacrylate-triallyl isocyanurate-divinylbenzene) matrix containing magnetite colloids. The results showed that the matrix was superparamagnetic and could be separated magnetically from a suspension in a few seconds. Protein adsorption properties of diethylamine-derivatized matrix were characterized with bovine serum albumin (BSA) as a model protein. The static capacity determined by batch adsorption was 79 mg/ml wet matrix. Kinetic study gave an effective diffusivity of BSA of 5.0 x 10(-13) m2/s in the matrix at an initial BSA concentration in the liquid phase of 1.0 mg/ml. Stability of the matrix was confirmed by recycling of the matrix in protein adsorptions.  相似文献   

5.
以甲基丙烯酸缩水甘油酯为单体 ,采用固液联合致孔方式 ,通过一步悬浮聚合制备了一种新型双孔高分子球形载体 .经化学修饰后 ,得到含二乙胺羟丙基的阴离子交换剂 (介质A) .优化了制备条件 .并与用相同方法制备的但仅含有机溶剂致孔剂的介质B进行了比较 .介质A和B均具有较高的静态吸附容量和机械强度 .由于介质A内含有流动相可以对流通过的大孔 ,因此其动态吸附容量远高于介质B ,并且在较高的流速下表现出较好的色谱流动性能  相似文献   

6.
Infrared matrix-assisted laser desorption/ionization (IR-MALDI) of the polyaromatic hydrocarbons (PAHs) anthracene, benzo[a]pyrene, and dibenz[a,h]anthracene was performed using a 10.6-microm CO2 laser and a liquid matrix. Sulfolane (tetrahydrothiophene 1,1-dioxide) was found to be an effective matrix for PAH ionization: mass spectra obtained with a sulfolane matrix contain an intense molecular ion peak; interference from PAH fragment and matrix peaks is negligible in all cases. The main limitation of the sulfolane matrix is sample evaporation after 3 to 5 min in vacuum. This sample lifetime can be increased to between 15 and 30 min using a 2:1 (v/v) mixture of sulfolane and glycerol, but the resulting spectra have greater matrix interference and decreased shot-to-shot signal stability.  相似文献   

7.
The use of inorganic species as assisting materials in matrix-assisted laser desorption/ionization (MALDI) analysis is an alternative approach to avoid interfering matrix ions in the low-mass region of the mass spectra. Reports of the application of inorganic species as matrices in MALDI analysis of small molecules are, however, scarce. Nevertheless, titanium dioxide (TiO(2)) powder has been reported to be a promising matrix medium. In this study we further explore the use of TiO(2) as a matrix for the MALDI analysis of low molecular weight compounds. We present results showing that nanosized TiO(2) anatase and TiO(2) rutile perform better as MALDI matrices than a commercial TiO(2) anatase/rutile mixture. Moreover, when using nanosized TiO(2) anatase as a matrix, high-quality mass spectra can be obtained with strong analyte signals and weak or non-existing matrix interference ions. Furthermore, our results show that the phase type plays an important role in the application of TiO(2) as a MALDI matrix.  相似文献   

8.
We present experimental matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) results comparing a liquid (glycerol/K(4)[Fe(CN)(6)]) and a solid matrix (2,5-dihydroxybenzoic acid, DHB) with respect to analyte signal stability and initial ion velocity. For applications requiring stable production of analyte ions over a long period of time, the liquid matrix is superior to the solid matrix. The stable analyte ion signal obtained from a liquid matrix allowed the measurement of collision cross sections of small poly(ethylene glycol) (PEG(n)) adduct ions in the flight tube with good resolution. The initial velocity of these adduct ions was measured. It was found that analyte molecules from the liquid matrix have initial ion velocities significantly smaller than those from the solid matrix. MALDI-TOF measurements for large molecules using a liquid matrix are therefore likely to result in smaller systematic errors in mass calibrations due to initial ion velocity.  相似文献   

9.
PbS nanocrystals (NCs) ranging between 4–8 nm were incorporated into Zirconium-Silica-Urethane (ZSUR) matrix obtained by the sol-gel method. The sizes of the particles were controlled by temperature treatment and by concentration of PbS in ZSUR matrix. The sizes of PbS NCs were determined by TEM measurements. The quantum size effect could also be extracted from optical absorption and photoluminescence spectra. The new matrix allows incorporation of up to 40% PbS forming a characteristic structure of dendrite by reacting lead acetate with ammonium thiocyanate in sol-gel matrix. The sol precursors of the matrix for Zirconium-Silica-Urethane contained zirconium oxide (ZrO2) matrix solution, tetramethoxysilane (TMOS), 3-glycid oxypropyl trimethoxysilane (GLYMO) and polyethylene urethane silane (PEUS) synthesized separately. The ZrO2 matrix solution was obtained from zirconium n-tetrapropoxide in propanol and acetic acid was used as a chelating agent to stabilize the zirconium oxide precursor.  相似文献   

10.
We investigate the conditions when noble-gas hydrides can be found in real environments and report on the preparation and identification of the HXeBr···CO(2) complex in a xenon matrix and HXeBr in a carbon dioxide matrix. The H-Xe stretching mode of the HXeBr···CO(2) complex in a xenon matrix is observed at 1557 cm(-1), showing a spectral shift of +53 cm(-1) from the HXeBr monomer. The calculations at the CCSD(T)/aug-cc-pVTZ-PP(Xe,Br) level of theory give two stable structures for the HXeBr···CO(2) complex with frequency shifts of +55 and +103 cm(-1), respectively. On the basis of the calculations, the experimentally observed band is assigned to the more stable structure with a "parallel" geometry. The HXeBr molecule was prepared in a carbon dioxide matrix and has the H-Xe stretching frequency of 1646 cm(-1), meaning a strong matrix shift and stabilization of the H-Xe bond. The deuterated species DXeBr in a carbon dioxide matrix absorbs at 1200 cm(-1). This is the first case where a noble-gas hydride is prepared in a molecular solid. The thermal stabilities of HXeBr and HXeBr···CO(2) complex in a xenon matrix and HXeBr in a carbon dioxide matrix were examined. We have found a high thermal stability of HXeBr in carbon dioxide ice (at least up to 100 K), i.e., under conditions that may occur in nature.  相似文献   

11.
An on-line coupling between a continuous-flow sequential extraction (CFSE) unit and flow field-flow fractionation with cross flow matrix removal (FlFFF/CFM) with ICP-OES detection was developed for determination of metal leachability from soil. The use of high concentration of Mg(NO3)2 in exchangeable phase can cause undesirable matrix effects by shifting ionization equilibrium in the plasma, etc., resulting in a clear need for matrix removal. Therefore, the capability of FlFFF/CFM to remove Mg matrix ion from soil extract was evaluated. Poly(ethylene imine) (PEI) having molecular weight of 25,000 Da was added to form complexes with analyte elements (Cu, Mn, Pb, and Zn) but not the matrix element (Mg). The free Mg matrix ions were then removed by filtering off through the ultrafiltration membrane, having a 1000-Da molecular weight cut-off, inside the FlFFF channel. With the use of FlFFF/CFM, matrix removal efficiency was approximately 83.5%, which was equivalent to approximately 6-fold dilution of the matrix ion. The proposed hyphenated system of CFSE and FlFFF/CFM with ICP-OES detection was examined for its reliability by checking with SRM 2710 (a highly contaminated soil from Montana). The metal contents determined by the proposed method were not significantly different (at 95% confidence) from the certified values.  相似文献   

12.
The analysis of ammonium, alkali and alkaline-earth trace cations (0.5 ppm) in samples with a calcium, sodium or magnesium matrix (500 ppm) has been achieved using 10 mM imidazole (pH 4.5) electrolyte to which a complexing agent (15-crown-5, oxalic acid or dipicolinic acid) has been specifically added in order to decrease the electrophoretic mobility of the matrix cation and thus to allow the separation of higher mobility cations at sub-ppm concentrations. The influence of several experimental parameters (complexing agent concentration, buffer pH and temperature) have been studied in order to optimize the separation. The complexing agent concentration appears to be the main parameter governing the selectivity of the cations during the analysis of matrix samples. In optimized conditions, we have checked that the separation between minor inorganic cations is not significantly altered by an increase in the matrix cation concentration. As the concentration of the matrix cation increases, the migration times of minor cations remain unchanged even for a 1000 ppm concentration of the matrix cation. Finally, these optimized buffers allow the quantitation of minor cations down to 0.05% (w/w) for calcium- or magnesium- matrix simulated samples and 0.2% (w/w) for sodium-matrix simulated samples.  相似文献   

13.
A method for quantitative determination of magnetization exchange rate constants (cross-relaxation and chemical exchange) from a series of two-dimensional exchange spectra is presented. The method, the least error matrix analysis (LEMA), combines a series of full matrix calculations at different mixing times in a least-squares manner. LEMA embodies the principal advantages of full-relaxation matrix analysis (FMA) and initial rate buildup (BU) analysis. Like FMA, it takes into account all the relations among the spectral matrix elements and in analogy to BU makes use of their time evolution. By means of calculations, simulations, and experiments, we have shown that LEMA provides the dynamic matrix from a given set of experimental data with errors that are smaller than in either FMA or BU calculations.  相似文献   

14.
We have studied, via laser absorption spectroscopy, the velocity distribution of (7)Li atoms released from cryogenic matrices of solid neon or molecular hydrogen. The Li atoms are implanted into the Ne or H(2) matrices--grown onto a sapphire substrate--by laser ablation of a solid Li or LiH precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms. With a NiCr film resistor deposited directly onto the sapphire substrate we are able to transfer high instantaneous power to the matrix, thus reaching a fast sublimation regime. In this regime the Li atoms can get entrained in the released matrix gas, and we were also able to achieve matrix sublimation times down to 10 μs for both H(2) or Ne matrix, enabling us to proceed with the trapping of the species of our interest such as atomic hydrogen, lithium, and molecules. The sublimation of the H(2) matrix, with its large center-of-mass velocity, provides evidence for a new regime of one-dimensional thermalization. The laser ablated Li seems to penetrate the H(2) matrix deeper than it does in Ne.  相似文献   

15.
In this study matrices were prepared from particles of poorly water-soluble drugs such as acetaminophen (Act) to determine the drug release rate from these matrix particles. The matrix particles were prepared by incorporating drugs into chitosan powder (Cht, carrier) using a spray-drying method. The formation of composite particles was confirmed by scanning electron microscopic (SEM) analysis. The matrix particles prepared by spray-drying were spherical with a smooth surface. The crystallinity of acetaminophen in the composite particles was evaluated by powder X-ray diffraction and differential scanning calorimetry (DSC). The degree of crystallinity of acetaminophen in the matrix particles decreased with a reduction in the weight ratio of acetaminophen relative to the carrier. These results indicate that a solid dispersion of acetaminophen in chitosan forms matrix particles. The interaction between acetaminophen and chitosan was also investigated by FT-IR analysis. FT-IR spectroscopy of the acetaminophen solid dispersion suggested that the carbonyl group of acetaminophen and the amino group of chitosan formed a hydrogen bond. There were some differences at pH levels of 1.2 and 6.8 in the release of acetaminophen from the physical mixture compared to the matrix particles. At pH 1.2, the release from the matrix particles (Act : Cht=1 : 5) was more sustained than from the physical mixtures. The 70% release time, T70, of acetaminophen from the matrix particles (Act : Cht=1 : 5) increased in pH 1.2 fluid by about 9-fold and in pH 6.8 fluid by about 5-fold compared to crystalline acetaminophen. These results suggest that matrix particles prepared by spray-drying are useful as a sustained release preparation.  相似文献   

16.
The matrix enhancement effect in gas chromatography (GC) has been a problem for the last decade and results in unexpected high recovery. Most efforts, including the use of different types of injectors/matrix simplification procedures, and further clean-up associated with removing this effect has focused on equalizing the response of the standard in the solvent and matrix. However, after eliminating the matrix enhancement effect, the sensitivity of GC remained unchanged. But, GC sensitivity can be increased by utilizing this matrix effect originating from a matrix-matched standard. Very few studies have highlighted utilizing the matrix effect but have rather advocated eliminating it. Analyte protectants (3-ethoxy-1,2-propanediol, gulonolactone and sorbitol) have been introduced as an alternative for GC–mass spectroscopy (GC–MS) (not examined for other GC detectors), as they equalize the response without removing the matrix effect, and, hence, increase sensitivity. Versatile applications of analyte protectants are not observed in practice. The European guidelines recommend the use of matrix-matched standard calibration for residue measurements. As a result, numerous applications are available for matrix-matched standards that compensate for the matrix effect. Moreover, the matrices (among them pepper leaf matrix) act as a protectant for thermolabile analytes in some cases. A lower detection limit should be achieved to comply with the maximum residue limits. Therefore, the matrix enhancement effect, which is considered a problem, can play an important role in lowering the detection limit by increasing the transfer of analyte from the injection port to the detector.  相似文献   

17.
To study the leakage at different solution pH values, IgG Sepharose 6FF®, a commercially available immunoadsorbent, was used as a model. The leaked substance consists of three parts: (1) ligands and its fragments; (2) ligands plus matrix fragments in which ligands are chemically attached to the adsorbent matrix; and (3) matrix fragments. Buffer solution pH values had a great effect on both the kinetics and the amount of ligand leakage. Cross‐linking of the adsorbent matrix could reduce both matrix leakage and antibody leakage at pH 3.0, but its effect was limited at pH 11.0 for ligand leakage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
19.
The molecular structure of any system may be unambiguously described by its adjacency matrix, A, in which bonds are assigned entry a(ij) = 1 and non-bonded pairs of atoms entry a(ij) = 0. For π-electron-containing conjugated hydrocarbons, this matrix may be modified in order to represent one of the possible Kekulé structures by assigning entry 1 to double bonds and entry 0 to single bonds, leading to the Kekulé matrix K which can be obtained from the A matrix by subtracting 1 from elements a(pq) that represent single bonds in the Kekulé structure. The A and K matrices are the boundary cases of a general matrix A(ε), named perturbation matrix, in which from elements a(pq) that represent single bonds is subtracted a value ε∈<0,1> representing the magnitude of the perturbation. The determinant of the A(ε) matrix is unambiguously represented by an appropriate polynomial that, in turn, can be written in a form containing terms ±(1-ε)(N/2) that identify types of π-electron conjugated cycles (N is the corresponding number of π-electrons). If the sign before the term is (+), then the contribution is stabilizing, but if it is (-) the contribution is destabilizing. The approach shows why and how the Hückel rule works, how the Randi? conjugated circuits result from the analysis of canonical structures, and also how the Clar rule may be extended to include aromatic cycles larger than six-membered (aromatic sextet).  相似文献   

20.
A robust and sensitive sample preparation method is presented for matrix-assisted laser desorption ionization (MALDI) mass spectrometric analysis of low nanomolar concentrations of proteins containing high amounts of common salts and buffers. This method involves the production of densely packed sub-micrometer matrix crystals by depositing a matrix solution on top of a matrix seed-layer prepared on a MALDI target. A sub-microliter aliquot of analyte solution is then directly added to the top of the matrix crystals to form a thin-layer. alpha-Cyano-4-hydroxycinnamic acid (4-HCCA) is used as matrix and demonstrated to give better performance than other commonly used matrices, such as 2,5-dihydroxybenzoic acid (DHB), 2-(4-hydroxy-phenylazo) benzoic acid (HABA), or sinapinic acid. This three-layer method is shown to be superior to the other MALDI sample preparation methods, particularly for handling low nanomolar protein solutions containing salts and buffers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号