首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface tailoring control in micelle templated silica   总被引:1,自引:0,他引:1  
Surface tailoring control was studied using new concept surface-protector (SP) group that can covered a part of surface. In micelle templated silica, cationic surfactant had the role of SP group. Various methods of silylation on the surface coverage was done on the hexagonal micelle templated silicas and the samples was characterized using BET surface measurement, pore size distribution, FT-IR and 13C and 29Si MAS NMR. Direct silylation of micelle templated silica still containing the templating surfactant can lead to total or partial silylation of the internal (and external) surface depending on the silylation agent. A mixture of chlorotrimethylsilane in hexamethyldisiloxane leads to full coverage by trimethylsilyl groups and to a very hydrophobic surface. Using hexamethyldisilazane, the silylation drops down to 45-65% and displaces only partially the templating CTMA+ surfactant. The displacement of the remaining surfactant molecules leaves behind hydrophilic nests of the size of the ammonium heads (∼0.7 nm2). Cation exchange can be performed on these nests at pH to 10 without structure collapse.  相似文献   

2.
Ordered mesoporous silicas SBA-15 with high loadings of pendant vinyl groups have been synthesized via co-condensation of tetraethoxysilane (TEOS) and triethoxyvinylsilane (TEVS) templated with a triblock copolymer.  相似文献   

3.
We present a strategy to increase the sensitivity of resonators to the presence of specific molecules in the gas phase, measured by the change in resonant frequency as the partial pressure of the molecule changes. We used quartz crystals as the resonators and coated them with three different thin films (<1 microm thick) of porous silica: silica xerogel, silica templated by an ordered hexagonal phase of surfactant micelles, and silica templated by an isotropic L3 phase surfactant micellar system. We compared the sensitivity of coated resonators to the presence of water vapor. The crystals coated with hexagonal phase-templated silica displayed a sensitivity enhancement up to 100-fold compared to an uncoated quartz crystal in the low-pressure regime where adsorption played a dominant role. L3 phase-templated silica displayed the highest sensitivity (up to a 4000-fold increase) in the high partial pressure regimes where capillary condensation was the main accumulation mechanism. Three parameters differentiate the contributions of these coatings to the sensitivity of the underlying resonator: (i) specific surface area per unit mass of the coating, (ii) accessibility of the surfaces to a target molecule, and (iii) distribution in the characteristic radii of curvature of internal surfaces, as measured by capillary condensation.  相似文献   

4.
The beneficial effects humidity treatments have on molecularly templated mesoporous silica films with respect to elastic modulus, with minimal detrimental effects on porosity and dielectric constant, were identified.  相似文献   

5.
Highly aligned stringlike silica nanostructures are obtained through templated synthesis in the columnar hexagonal structure of a rigid crystalline surfactant mesophase. A two-step procedure is used to first shear-align the surfactant mesophase and then conduct synthesis under quiescent conditions in the mesophase. The mesophase retains its alignment for extended periods, allowing materials synthesis to be decoupled from the application of shear. The observations have significant implications in the control of ceramic microstructure morphology and transitions from nonaligned to aligned nanowire type structures.  相似文献   

6.
The in-situ graphitization of an as-made, large pore silica mesostructure templated by nonionic Pluronic 123 surfactant micelles provides a low cost pathway to the nanocasting of linear carbon nanotubes.  相似文献   

7.
Mesostructured silica thin films and particles provide highly versatile supports or frameworks for functional materials where a desired function (such as energy transfer, electron transfer, or molecular machines) is induced by molecules deliberately placed in specific regions of the structure. The relatively gentle templated sol–gel synthesis methods allow a wide variety of molecules to be used, and the optical transparency of the framework is very suitable for studies of light-induced functionality. In this paper, three types of functionality are used to obtain fundamental understanding of the materials themselves and to develop active materials that can trap and release molecules from the pores upon command. Photo-induced energy transfer is used to verify that molecules can be placed in specific spatially separated regions of the framework; fluorescence resonance energy transfer is used as a molecular ruler to measure quantitatively the distance between pairs of molecules. Secondly, photo-induced electron transfer is used to obtain fundamental information about the electrical insulating properties of the framework. Finally, two types of molecular machines, a light-driven impeller and a light activated nanovalve, are described. Both machines contain moving parts attached to solid supports and do useful work. The valves trap and release molecules from the mesopores, and the impellers expel molecules from the pores. Applications of the materials to drug delivery and the release of drug molecules inside living cells is described.  相似文献   

8.
We construct an atomistic silica pore model mimicking templated mesoporous silica MCM-41, which has molecular-level surface roughness, with the aid of the electron density profile (EDP) of MCM-41 obtained from X-ray diffraction data. Then, we present the GCMC simulations of argon adsorption on our atomistic silica pore models for two different MCM-41 samples at 75, 80, and 87 K, and the results are compared with the experimental adsorption data. We demonstrate that accurate molecular modeling of the pore structure of MCM-41 by using the experimental EDP allows the prediction of experimental capillary evaporation pressures at all investigated temperatures. The experimental desorption branches of the two MCM-41 samples are in good agreement with equilibrium vapor–liquid transition pressures from the simulations, which suggests that the experimental desorption branch for the open-ended cylindrical pores is in thermodynamic equilibrium.  相似文献   

9.
Simple methods for preparation of mesoporous rodlike silica and titania nanoobjects, some with exceedingly high aspect ratios, are described. They involve hydrolytic sol-gel processes using nanotubes from aqueous assemblies of very dilute (0.1 wt%) sodium lithocholate as templates. Shearing of the lithocholate nanotubes results in aligned, templated silica rods. The relative rates of lithocholate self-assembly and of polymerization of the titania precursors, especially, appear to be important factors in templating efficiency.  相似文献   

10.
聚丙烯酸控制合成的聚合物/二氧化硅复合纳米球   总被引:1,自引:0,他引:1  
以3-氨丙基三甲氧基硅烷(APMS)和正硅酸乙酯(TEOS)为硅源, 与阴离子聚合物聚丙烯酸(PAA)链之间通过S-N+-I-机理组装合成了聚丙烯酸-二氧化硅(PAA/SiO2)复合纳米球. SEM, TEM, TG和FTIR表征结果表明, 合成的纳米球是聚丙烯酸和二氧化硅复合物, 平均直径约为80 nm. 在合成PAA/SiO2复合纳米球的体系中, 加入不同量的有机溶剂THF能够调控复合球的尺度.  相似文献   

11.
The evolution of photochemical surfactant removal and silica condensation from organically templated thin film silica nanocomposites with mesoscopic ordering has been probed using a combined application of Fourier transform infrared (FT-IR) spectroscopy and single wavelength ellipsometry. Thin films of silica nanocomposites were prepared by a previously reported evaporation-induced self-assembly process. Specifically, oxidized silicon and gold substrates were withdrawn at 25 mm/min from a subcritical micelle concentration solution containing an ethylene oxide surfactant as a structure-directing agent and tetraethyl orthosilicate as a silica precursor. Real-time grazing incidence difference FT-IR spectra of the nanocomposite films on gold taken during exposure to short-wavelength ultraviolet light (184-257 nm) show that surfactant removal and silica condensation occur gradually and concomitantly. Surfactant removal and silica reconstructions were found to be nearly complete after 90 min of exposure. Further, a transient feature was observed in the FT-IR spectra around 1713 cm(-1) during the UV exposure process and was assigned to a carbonyl (C=O) stretching mode absorption, reflecting the transient formation of a partially oxidized surfactant intermediate. From these data we propose a stepwise model for surfactant removal from the nanocomposite films. Ellipsometrically determined index of refraction values collected as a function of UV exposure are also shown to support such a stepwise mechanism of surfactant removal from the ordered nanocomposite silica thin film mesophases studied here.  相似文献   

12.
The beneficial effects that alkali metal and alkylammonium salt additions to molecularly templated silica sols have on the resulting mesoporous silica films formed from evaporative-coating methods with respect to porosity, elastic modulus, dielectric constant, and film surface uniformity were investigated and identified.  相似文献   

13.
Positron annihilation lifetime spectroscopy (PALS) based on a pulsed slow positron beam was applied to study mesoporous silica films, synthesized using amphiphilic PEO–PPO–PEO triblock copolymers as structure-directing agents. The pore size depends on the loading of different templates. Larger pores were formed in silica films templated by copolymers with higher molecular-weights. Using 2-dimensional PALS, open porosity of silica films was also found to be influenced by the molecular-weight as well as the ratio of hydrophobic PPO moiety of the templates.  相似文献   

14.
Fluorinated mesoporous silica films were synthesized via sol-gel co-condensation and coated on glass substrates. Surfactant template concentrations were varied to examine the effect of encapsulated organic functionality on the microtribological properties of films using atomic force microscopy. Films were tested as synthesized and also after being abraded to expose interior mesostructured surfaces. Results indicate that templating allows fluorinated moieties to become encapsulated within the film, which affect the tribological properties of the exposed internal surfaces. Depending on the amount of template added, the interior surfaces were able to achieve a friction level comparable to that of conventional monolayers. The dependence of friction on sliding speed revealed that fluorinated templated films have tribological properties intermediate to those of a nonfunctional surface and a conventional fluorinated monolayer.  相似文献   

15.
The effects of storage temperature and time on deposition characteristics of molecularly templated silica sols, used in synthesis of mesoporous silica films, were investigated by preparing acid catalysed water-ethanol-TEOS sols with surfactant and analysing by silicon-29 NMR spectroscopy over a period of multiple days, and by producing films after specific storage times corresponding to collection of NMR spectral data, and analysed for thickness and porosity.  相似文献   

16.
Summary: We have conducted Monte Carlo simulations to investigate a greatly simplified model for a blend composed of templated materials (polymers or monomers), smaller reacting particles and solvents on a two‐dimensional lattice. In the simulations, we compute the mean chain conformation of flexible templated polymers, and the distribution of the number of adjacent reacting particles aligned along the same axis to rationalize how templated materials affect the physical aggregation of smaller particles in a blend. We first examine the effects of the effective interactions between templated materials and smaller reacting particles. For repulsive interactions, flexible templated polymers tend to contract to reduce repulsions arising from smaller reacting particles, but for attractive interactions, mean chain dimension increases to maximize attraction. When templated material composition is increased, the conformational deformation of templated polymers becomes more pronounced. Moreover, in the presence of attractive interactions, reacting particles are more dispersed in the blend. In contrast, repulsive interactions increase the probability of aggregation of reacting particles. Also, our findings show that templated monomers (without chain connectivity) interact with reacting particles more effectively than with templated polymers due to the greater interacting area per monomer, which enhances the dispersion and segregation of reacting particles in the blend due to the attractive and repulsive interaction, respectively. In addition, as templated material composition is increased, the probability of forming a larger aggregate decreases. This simple model allows us to elucidate the role of templated materials on the physical aggregation of smaller particles in a blend.

Probability distribution P(m) of finding m adjacent reacting particles along the same axis in the presence of templated polymers (open symbols) and templated monomers (solid symbols) for different monomer‐reacting particle ratio, 1:3 (□/▪), 1:1 (○/•) and 3:1 (▵/▴):.  相似文献   


17.
Template transformation in MCM-41 material during thermal treatment under different conditions was investigated on the basis of thermogravimetry (TG-DTA), X-ray diffraction (XRD) and positron annihilation lifetime spectroscopy (PALS). Micelle templated silica was prepared using C18 trimethylammonium bromide. The pore structure of MCM-41 samples obtained after removal of the surfactant in air, argon flow and vacuum was analyzed on the basis of the adsorption isotherms of nitrogen at 77 K and XRD experiments. The TG-DTA experiments confirm the mechanism of the template removal known from literature. However, the sequence of the processes during thermal treatment of as-synthesized sample and temperature of transformations depended strongly on the presence of oxygen and the heating rate. The main template degradation took place below 573 K and was independent of the kind of atmosphere above the sample. Residual carbonaceous species are removed from pores and the external surface of MCM-41 silica upon heating to 823 K by combustion or evaporation. The latter process as well as translocation of liquid-like products of template degradation from the pore interior to external surface was confirmed by PALS experiment in vacuum.  相似文献   

18.
Synthesis of some novel fluorescence nanomaterials loaded with photoactive polyphenols originated from plants with a high spectrum of biological activity, by replacing synthetic chemicals, may open new opportunities for optical and bio-medical applications. This paper presents the synthesis, characterization and fluorescence properties of a new class of materials based on host hybrid matrices obtained through templated sol–gel route, by hydrolysis and co-condensation of tetraorthoethylsilicate with octaisobutyltetracyclo [7.3.3.15,11] octasiloxane-endo-3,7-diol. The aim of paper is focused on the evaluation of the behavior of the fluorescence properties of ornamental bush extract at immobilization in a templated silica matrix and in a silica-silsesquioxane network, using as templates a neutral, non-toxic and biodegradable surfactant from poly(ethyleneglycol) class and a high biocompatible non-surfactant from glucidic class. The proofs of ornamental bush extract entrapment by physical interactions in silica based networks were provided by FT-IR and UV–VIS spectroscopy. The changes of polymer network due to the hydrogen bond interactions between residual Si–OH groups and functional groups of organic molecules from extract were evidenced by shifts of specific vibrations. In UV–VIS-NIR domain, the chromophore groups from ornamental bush extract were also evidenced by similar small shifts. As a result of ornamental bush extract entrapment, in all the immobilized samples the fluorescence intensity was more than 10 times amplified in samples templated with poly(ethylenglycol) surfactant) and of about 5 times in samples with glucidic template due to the physical adsorption of polyphenolic molecules from extract, excellent synergistic optical properties of SiO2 and silsesquioxane compound and also due to a favorable conformational arrangement. The size of synthesized polymeric materials, estimated by dynamic light scattering technique showed main diameters less then 1.4 μm, namely 1,060 and 211 nm—for samples with d-glucose template and 1,330 and 531 nm—for samples with poly(ethyleneglycol) template, respectively, with a narrow size distribution and a polidispersity varying between 0.022 and 0.426. These results are in good accordance with TEM images that evidenced the presence of some polymeric aggregates which contain the vegetal extract immobilized inside hybrid SiO2-Sq polymeric network of about hundred nanometers size. This study bring new contributions to the development of the sol–gel procedure by entrapment of a complex vegetable mixture in polymeric matrices as integral component of silica and hybrid silica-silsesquioxane networks which leads to a significant enhancement of the functional properties of the final material, thus diversifying the potential applications of organic doped sol–gel glasses.  相似文献   

19.
Silica-based monoliths with co-continuous structure were successfully prepared through a sol–gel process in the presence of a poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (F68). The triblock copolymer was compared to the classical PEG, in the formation of silica monoliths and was demonstrated to lead to co-continuous structures in a wider composition range, presenting smaller through pores. Moreover, mesoporous structures templated at the sol–gel transition were assumed to occur at the surface of the silica skeleton while PEG exhibited no mesopore templating.  相似文献   

20.
Nanostructured PtRu material has been successively synthesized via chemical co-reduction of hexachloroplatinic acid and ruthenium trichloride using three-dimensional (3D) hexagonal mesoporous SBA-12 silica as a solid template, and has been studied as an electrocatalyst toward methanol electro-oxidation. The ordered nanostructure of the PtRu particles has been disclosed by transmission electron micrographs and is characterized by regular pores of ca. 3.0 ± 0.3 nm in diameter separated by walls of ca. 3.0 ± 0.3 nm thick. X-ray diffraction and energy dispersive X-ray spectroscope studies indicate that the PtRu material comprises of complicated phases rather than a single alloy phase of Pt and Ru. The specific electrochemical surface area of the nanostructured powder measured using both CO and underpotential deposited Cu stripping techniques is 74–78 m2 g–1, higher than that of unsupported precious metal catalysts prepared using standard techniques. The combination of high surface area and periodic nanostructure of the templated PtRu makes it an interesting promising fuel cell electrocatalyst. This has been demonstrated by the high activity of the templated PtRu towards the methanol electrooxidation. Therefore the solid template route based on 3D mesoporous silica with controlled pore size and high pore interconnectivity provides an interesting alternative to produce promising high-surface-area electrode materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号