首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methyl- and phenyl-substituted N-(ethoxycarbonyl)-2-azabicyclo[2.2.0]hex-5-enes 6 were reacted with NBS in wet DMSO to afford bromohydrins. Mixtures of unrearranged 6-exo-bromo-5-endo-hydroxy-2-azabicyclo[2.2.0]hexanes 7a,b and rearranged 5-anti-bromo-6-anti-hydroxy-2-azabicyclo[2.1.1]hexanes 8a,b were formed stereoselectively from the parent alkene 6a and 4-methyl alkene 6b. The 5-methyl alkene 6c affords only unrearranged bromohydrin 7c and dibromohydrin 9. By contrast, solely rearranged 3-endo-substituted-2-azabicyclo[2.1.1]hexane bromohydrins 8d-f result from additions to 3-endo-methyl alkene 6d, 3-endo-4-dimethyl alkene 6e, and 3-endo-phenyl alkene 6f. As an alternative route to bromohydrins, the parent 5,6-exo-epoxide 10a and 5-endo-methyl-5,6-exo-epoxide 10b were ring opened with bromine/triphenylphosphine to afford unrearranged 5-endo-bromo-6-exo-hydroxy-2-azabicyclo[2.2.0]hexanes 11a,b, while the 3-endo-methyl epoxide 10c afforded solely the rearranged 5-anti-bromo-6-anti-hydroxy-3-exo-methyl-2-azabicyclo[2.1.1]hexane isomer 8g. Tributyltin hydride reduction of bromohydrins 7a,b and 11a afforded novel 2-azabicyclo[2.2.0]hexan-5-ols 13a,b and -6-ol 14, and bromohydrins 8a,b, 8d-g afforded new 2-azabicyclo[2.1.1]-hexan-5-ols 15a,b and 15d-g.  相似文献   

2.
Koreeda M  Wang Y  Zhang L 《Organic letters》2002,4(19):3329-3332
[reaction: see text] The (methoxycarbonylamino)methyl radical can be readily generated from its PhSe precursor and undergoes preferential 6-exo-spiro cyclization when PhSO(2) is attached at the distal alkene carbon. This property was applied to the synthesis of the racemic and optically active spirocyclic alkaloid sibirine.  相似文献   

3.
[structure: see text] Thianthrene cation radical tetrafluoroborate (Th*+ BF4(-)) added to the terminal alkynes 1-pentyne, 1-hexyne, 1-heptyne, 1-octyne, 1-nonyne, and 1-decyne to form trans-1,2-bis(5-thianthreniumyl)alkene tetrafluoroborates (1-6). Similarly, addition of phenoxathiin cation radical tetrafluoroborate (PO*+ BF4(-)) to the same alkynes gave 1,2-bis(10-phenoxathiiniumyl)alkene tetrafluoroborates (7-12). The trans configuration of two of the adducts (1 and 4) was shown with X-ray crystallography. When solutions of 1-6 in chloroform were stirred with activated alumina, cis elimination of a proton and thianthrene (Th) occurred with the formation of 1-(5-thianthreniumyl)alkyne tetrafluoroborates (1a-6a). Similar treatment of 8-12 caused elimination of a proton and phenoxathiin (PO) with formation of 1-(10-phenoxathiiniumyl)alkene tetrafluoroborates (8a-12a). Stirring of 1a-6a with alumina for short periods of time caused their conversion into 5-[(alpha-keto)alkyl]thianthrenium ylides (1b-6b) and alpha-ketols, RC(O)CH2OH (1c-6c).  相似文献   

4.
[reaction: see text] Stannylaminyl radicals derived from radical reactions of Bu(3)SnH with azidoalkylmalononitriles exhibit highly efficient 5- and 6-exo cyclization onto either nitrile group to give aminoiminyl radicals that in turn are reduced to amidines or undergo successive 5-exo cyclization onto an internal alkene.  相似文献   

5.
Photoinduced reactions of chloranil (CA) with 1,1-diarylethenes 1 [(p-X-Ph)(2)C=CH(2), X = F, Cl, H, Me] in benzene afforded products 4-14, respectively, with the bicyclo[4.2.0]oct-3-ene-2,5-diones 4, the 6-diarylethenylcyclohexa-2,5-diene-1,4-diones 5, and 2,3,5, 6-tetrachlorohydroquinone 13 as the major primary products. The cyclobutane products 4 are formed via a triplet diradical intermediate without involvement of single electron transfer (SET) between the two reactants, while 5 is derived from a reaction sequence with initial SET interaction between (3)CA and the alkene. The 9-arylphenanthrene-1,4-diones 6 and its 10-hydroxy-derivatives 7 are secondary photochemical products derived from 5. The isomeric cage products 9-11 are formed from 4 via intramolecular benzene-alkene [2 + 2] (ortho-)photocycloadditions induced by the triplet excited enedione moiety. The relative amount of the two groups of products (4 and its secondary products 9-11 via non-SET route vs 5 and its secondary products 6, 7, 8, 12, and 14 via SET route) shows a rather regular change, with the ratio of non-SET route products gradually increasing with the increase in oxidation potential of the alkenes and in the positive free energy change for electron transfer (DeltaG(ET)) between (3)CA and the alkene, at the expense of the ratio of the products from the SET route. The competition between the SET and non-SET routes was also found to be drastically influenced by solvent polarity, with the SET pathways more favored in polar solvent. Photo-CIDNP investigations suggest the intermediacy of exciplexes or contact ion radical pairs in these reactions in benzene, while in acetonitrile, SET process led to the formation of CA(*)(-) and cation radical of the alkene in the form of solvent separated ion radical pairs and free ions.  相似文献   

6.
An iron-catalyzed trifluoromethylation of indole-tethered alkene with Togni's reagent to construct CF3-containing spiro[indole-3,3′-pyrrolidine] and tetrahydrocarbazole derivatives under mild and convenient conditions has been disclosed. Mechanistic studies indicate that the reaction proceed through a CF3 radical addition to the alkene, followed by sequential dearomatizing spiocyclization of the indole and oxidation to afford the spiro[indole-3,3′-pyrrolidine] derivatives. Meanwhile, when the substituent at the C2 position of the indole is hydrogen, the CF3-containing tetrahydrocarbazole is obtained through trifluoromethylation of alkene and cyclization of indole.  相似文献   

7.
Treatment of N-tosyliodoaziridine derivatives with Et(3)B efficiently produces various azahomoallyl radical (2-akenylamidyl radical) species which give oxygen-functionalized pyrrolidine derivatives through iodine atom transfer [3 + 2] cycloaddition with electron-rich alkenes such as enol ethers and ketene acetal. The present cycloaddition reaction proceeds regioselectively via C-N bond cleavage of an aziridinylalkyl radical intermediate and addition of the resulting azahomoallyl radicals to the terminal carbon of an alkene. The reaction of alkenes with the cyclohexenylamidyl radical generated from an optically active bicyclic iodoaziridine [(1S,2S,6S)-2-iodo-7-(p-toluenesulfonyl)-7-azabicyclo[4.1.0]heptane, 94% ee] also proceeds to give optically active octahydroindole derivatives (84-93% ee).  相似文献   

8.
[reaction: see text] The first total synthesis of the antibiotic acanthodoral (1) has been achieved from 3-methyl-2-cyclohexen-1-one in 19 steps in 2.1% overall yield. The synthesis features the use of a Pd-ene reaction in the presence of CO to form the endocyclic alkene 8, a nonreductive acyl radical cyclization reaction, and a ring contraction reaction by the Wolff rearrangement. (+)-Acanthodoral has also been synthesized starting from (+)-S-2,2-dimethyl-6-methylenecyclohexanecarboxylic acid.  相似文献   

9.
Stereocontrolled Mn-mediated addition of alkyl iodides to chiral N-acylhydrazones enables strategic C-C bond constructions at the stereogenic centers of chiral amines. Applying this strategy to quinine suggested complementary synthetic approaches to construct C-C bonds attached at the nitrogen-bearing stereogenic center using multifunctional alkyl iodides 6a-d as radical precursors, or using multifunctional chiral N-acylhydrazones 26a-d as radical acceptors. These were included among Mn-mediated radical additions of various alkyl iodides to a range of chiral N-acylhydrazone radical acceptors, leading to the discovery that pyridine and alkene functionalities are incompatible. In a revised strategy, these functionalities are avoided during the Mn-mediated radical addition of 6d to chiral N-acylhydrazone 22b, which generated a key C-C bond with complete stereochemical control at the chiral amine carbon of quinine. Subsequent elaboration included two sequential cyclizations to complete the azabicyclo[2.2.2]octane ring system. Group selectivity between two 2-iodoethyl groups during the second cyclization favored an undesired azabicyclo[3.2.1]octane ring system, an outcome that was found to be consistent with transition state calculations at the B3LYP/6-31G(d) level. Group differentiation at an earlier stage enabled an alternative regioconvergent pathway; this furnished the desired azabicyclo[2.2.2]octane ring system and afforded quincorine (21b), completing a formal synthesis of quinine.  相似文献   

10.
[reaction: see text] Thermolysis of beta-lactam-tethered enallenyl alcohols gave tricyclic ring structures via a formal [2 + 2] cycloaddition of the alkene with the distal bond of the allene, while the tin-promoted radical cyclization in 2-azetidinone-tethered allenynes proceeded to provide bicyclic beta-lactams containing a medium-sized ring. The access to cyclization precursors was achieved by regio- and stereoselective metal-mediated carbonyl allenylation of 4-oxoazetidine-2-carbaldehydes in an aqueous environment.  相似文献   

11.
The generation and properties of nonchelated Zr-aryl-alkyne and Zr-aryl-alkene complexes that are stabilized by the presence of beta-Si-substituents in the alkyne and alkene ligands and fluorination of the aryl ligand are described. Reaction of [Cp'2Zr(OtBu)(ClCD2Cl)][B(C6F5)4] (1, Cp' = C5H4Me) with alkyne and alkene substrates (L) generates Cp'2Zr(OtBu)(L)+ adducts (L = HCCCH2SiMe3 (2); H2C=CHCH2SiMe3 (3); HCCMe (4); H2C=CHCH2CMe3 (5)). Equilibrium constants for substrate binding (Keq = [Zr-L][1]-1[L]-1; CD2Cl2, -89 degrees C) are much larger for the beta-Si-substituted compounds 2 (1.0(2) x 105 M-1) and 3 (1.7(4) x 103 M-1) than for hydrocarbon analogues 4 (3.6(7) x 102 M-1) and 5 (1.9(1) M-1), which is ascribed to beta-Si stabilization of the partial positive charge on Cint of the bound substrate. [Cp2Zr(C6F5)][B(C6F5)4] (7, Cp = C5H5) was generated by the reaction of Cp2Zr(C6F5)Me with [Ph3C][B(C6F5)4] in C6D5Cl. Reaction of 7 with alkyne and alkene substrates (L) generates Cp2Zr(C6F5)(L)+ adducts (L = HCCCH2SiMe3 (8); H2C=CHCH2SiMe3 (10)). No insertion of the substrate into the Zr-C6F5 bond is observed in 8 (at -38 degrees C) or 10 (up to 22 degrees C). The allyltrimethylsilane ligand in 10 undergoes nondissociative alkene face exchange ("alkene flipping", i.e., exchange of the Cp2Zr(C6F5)+ unit between the two alkene enantiofaces without alkene dissociation), with a first-order rate constant kflip = 23(1) s-1 (C6D5Cl, -38 degrees C). 10 also undergoes slower reversible decomplexation of the alkene (kdissoc = 5.0(8) s-1; C6D5Cl, -38 degrees C).  相似文献   

12.
Chemical single‐electron reduction of 1‐mesityl‐2,3,4,5‐tetraphenylborole ( 3 ) gave a stable radical anion [CoCp*2][ 3 ] as shown in earlier investigations. Herein, we present the reaction of [CoCp*2][ 3 ] with the 2,2,6,6‐tetramethylpiperidine‐N‐oxyl radical (TEMPO), a common radical trap. Instead of radical recombination, the reaction proceeds through a redox pathway involving oxidation of the borole radical anion combined with reduction of TEMPO. This electron‐transfer process is accompanied by a deprotonation reaction of the cobaltocenium counterion by the base TEMPO? to give TEMPO‐H and a neutral cobalt(I) fulvene complex ( 7 ). The latter was not observed directly during the reaction, because it instantaneously reacts as a nucleophile attacking at the boron center of the in situ generated borole 3 to give the borate 6 . However, 7 was synthesized independently by deprotonation of [CoCp*2][PF6]. In addition, the obtained zwitterionic cobaltocenium borate 6 undergoes a photolytic rearrangement to form the borata‐alkene derivative 9 that thermally transforms to the chiral cobaltocenium borate 12 . Our investigations are based on spectroscopic evidence, X‐ray crystallography, elemental analysis, as well as DFT calculations.  相似文献   

13.
Alkenylation reaction of alpha-halo carbonyl compounds with alkenylindiums proceeded via a radical process in the presence of triethylborane. Unactivated alkene moieties as well as a styryl group could be introduced by this method. The geometry of the carbon-carbon double bonds of the alkenylindiums was retained. Preparation of an alkenylindium via a hydroindation of 1-alkyne followed by radical alkenylation established an efficient one-pot strategy. [reaction: see text]  相似文献   

14.
[reaction: see text] Ketyl radical mediated tandem cyclization of omega-alkynyl carbonyl compounds bearing activated alkene using SmI(2) gave spiro[4.5]decanes stereoselectively. In the presence of HMPA, alpha,beta-unsaturated esters and alkenyl phosphonates were converted to spiro[4.5]decanes and a monocyclic compound, respectively. In the presence of Sm, bicyclic lactones were obtained from alpha,beta-unsaturated esters. The spiro[4.5]decane was provided from an alkenyl phosphonate. Interestingly, the stereochemical changeover at the first cyclization has been controlled by means of a variety of activators.  相似文献   

15.
Crich D  Shirai M  Rumthao S 《Organic letters》2003,5(20):3767-3769
[reaction: see text] Enantiomerically enriched beta-(diphenylphosphatoxy)nitroalkanes undergo radical ionic fragmentation, induced by tributyltin hydride and AIBN in benzene at reflux, to give alkene radical cations in contact radical ion pairs. These contact ion pairs are trapped intramolecularly by amines to give pyrrolidines and piperidines with significant enantioselectivity ( approximately 60% ee), indicative of cyclization competing effectively with equilibration within the ion pairs. Use of an intramolecular N-propargylamine as a nucleophile provides an enantiomerically enriched pyrrolizidine skeleton via a tandem polar/radical crossover sequence.  相似文献   

16.
[structure] C-Glycosides of N-acyl 2-amino-2-deoxygalactose (acyl = MeCO, CF(3)CO, t-BuOCO) are available in a stereoselective manner by trapping of an anomeric radical with an activated alkene. Using anomeric selenides, radical generation and trapping is carried out under conditions that avoid competitive reduction, and this chemistry has been applied to the synthesis of the novel C-glycoside analogue of O-benzyl alpha-D-GalNAc.  相似文献   

17.
The reaction of Cp'2Zr(O(t)Bu)Me (Cp' = C5H4Me) and [Ph3C][B(C6F5)4] yields the base-free complex [Cp'2Zr(O(t)Bu)][B(C6F5)4] (6), which exists as Cp'2Zr(O(t)Bu)(ClR)+ halocarbon adducts in CD2Cl2 or C6D5Cl solution. Addition of alkenes to 6 in CD2Cl2 solution at low temperature gives equilibrium mixtures of Cp'2Zr(O(t)Bu)(alkene)+ (12a-l), 6, and free alkene. The NMR data for 12a-l are consistent with unsymmetrical alkene bonding and polarization of the alkene C=C bond with positive charge buildup at C(int) and negative charge buildup at C(term). These features arise due to the lack of d-pi* back-bonding. Equilibrium constants for alkene coordination to 6 in CD2Cl2 at -89 degrees C, K(eq) = [12][6](-1)[alkene](-1), vary in the order: vinylferrocene (4800 M(-1)) > ethylene (7.0) approximately alpha-olefins > cis-2-butene (2.2) > trans-2-butene (<0.1). Alkene coordination is inhibited by sterically bulky substituents on the alkene but is greatly enhanced by electron-donating groups and the beta-Si effect. Compounds 12a-l undergo two dynamic processes: reversible alkene decomplexation via associative substitution of a CD2Cl2 molecule, and rapid rotation of the alkene around the metal-(alkene centroid) axis.  相似文献   

18.
邵海云 《化学教育》2007,28(12):6-9,12
介绍了四氧化锇催化不对称烯烃双羟基化的反应原理和以N-甲基吗啉-N-氧化物(N-methylmorpholine-N-oxide,NMO)、铁氰化钾K3[Fe(CN)6] 为氧化剂时烯烃双羟基化反应的催化循环;此外,还介绍了该催化反应立体选择性的机理和一些研究进展以及催化体系中手性配体的选择。  相似文献   

19.
Gold alkene complexes [Au(bipyR)(eta2-alkene)][PF6] (bipyR = 6-alkyl-2,2'-bipyridine) have been obtained by reaction of gold(III) oxo complexes [Au2(bipyR)2(mu-O)2][PF6]2 with alkenes. The crystal structure of the styrene adduct [Au(bipy(ip))(eta2-CH2=CHPh)][PF6] (bipy(ip) = 6-isopropyl-2,2'-bipyridine) has been solved by X-ray analysis.  相似文献   

20.
Polysulfone- and diphenyldisulfone-catalyzed alkene isomerizations are much faster for 2-alkyl-1-alkenes than for linear, terminal alkenes. The mechanism of these reactions has been investigated experimentally for the isomerization of methylidenecyclopentane into 1-methylcyclopentene, and theoretically [CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p) calculations] for the reactions of propene and 2-methylpropene with a methanesulfonyl radical, MeSO2*. On heating, polysulfones and (PhSO2)2 equilibrate with sulfonyl radicals, RSO2*. The latter abstract allylic hydrogen atoms in one-step processes giving allylic radical/RSO2H pairs that recombine within the solvent cage producing the corresponding isomerized alkene and RSO2*. The sulfinic acid, RSO2H, can diffuse out from the solvent cage (H/D exchange with MeOD,D2O) and reduce an allyl radical. Calculations did not support other possible mechanisms such as hydrogen exchange between alkenes, electron transfer, or addition/elimination process. Kinetic deuterium isotopic effects measured for the (PhSO2)2-catalyzed isomerization of methylidenecyclopentane and deuterated analogues and calculated for the H abstraction from 2-methylpropene and deuterated analogues by CH3SO2* are consistent also with the one-step hydrogen transfer mechanism. The high chemoselectivity for this reaction is not governed by an exothermicity difference but by a difference in ionization energies of the alkenes. Calculations for CH3SO2* + propene and CH3SO2* + 2-methylpropene show a charge transfer of 0.34 and 0.38 electron, respectively, from the alkenes to the sulfonyl radical in the transition states of these hydrogen abstractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号