首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
149Sm nuclear resonant inelastic scattering was carried out in a charge density wave compound SmNiC2. We have investigated temperature dependences of the Sm partial phonon density of states and recoil-free fraction at the Sm site and the average sound velocity estimated from the Sm partial density of states. The Sm partial density of states exhibits temperature dependence, suggesting that the phonon modes between 20 and 25 meV may correlate with the charge density wave. Temperature dependence of the recoil-free fraction is difficult to prove the correlation with either the charge density wave or ferromagnetic ordering. The average sound velocity obtained by the Sm partial phonon density of states exhibits temperature dependence, agreeing qualitatively with very recent elastic constant measurements.  相似文献   

2.
Y3Al5O12的热输运性质的第一性原理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
刘铖铖  曹全喜 《物理学报》2010,59(4):2697-2702
基于密度泛函微扰理论(DFPT)结合模守恒赝势方法进行晶格动力学模拟.得到了钇铝石榴石(YAG)的声子态密度、分波声子态密度和声子的色散谱.利用第一Brillouin区的特殊点取样方法,计算了YAG的比热容和布局数平均的声子群速度.在非谐相互作用下,利用Fermi黄金公式结合第一Brillouin区的特殊点取样方法,得出了YAG非谐声子平均自由程.综合考虑了两种声子散射机制,得到了YAG陶瓷的热导率.结果表明,对于YAG陶瓷,在低温时,晶界散射将对热阻起主要作用;在高于一定温度时,三声子相互作用对热阻的贡献将占主导地位.同时也从理论上证明了Sato等提出的在室温以上,YAG陶瓷与单晶的热导率的差异可以忽略的观点.所得到的热导率、比热容随温度的变化与实验结果很好地符合. 关键词: 声子平均自由程 密度泛函微扰理论 3Al5O12声子结构')" href="#">Y3Al5O12声子结构 热导率  相似文献   

3.
李斌  邢钟文  刘楣 《物理学报》2011,60(7):77402-077402
运用第一性原理密度泛函理论研究了铁基超导体LiFeAs的电子结构和声子谱.计算得到的LiFeAs基态具有涨落的条型反铁磁构型.通过比较LiFeAs在非磁态与条形反铁磁态下的声子态密度,发现,LiFeAs中各向异性自旋互作用的竞争产生了不稳定的自旋密度波和部分晶格位置弛豫,导致Fe和As原子振动模式的软化,从而提高电声子耦合强度.因此,自旋-声子互作用对非常规超导电性有重要贡献. 关键词: 铁基超导体 反铁磁序 超导电性 电声子耦合  相似文献   

4.
Mavrin  B. N.  Perminova  M. E.  Lozovik  Yu. E. 《JETP Letters》2019,109(9):606-609

The phonon and electronic properties, the Eliashberg function and the temperature dependence of resistance of electride Ca2N are investigated by the DFT-LDA (density functional theory in local density approximation) plane-wave method. The phonon dispersion, the partial phonon density of states and the atomic eigenvectors of zero-center phonons are studied. The electronic band dispersion and partial density of states conclude that Ca2N is a metal and the Ca 3p, 4s and N 2p orbitals are hybridized. For the analysis of an electron-phonon interaction and its contribution of the Eliashberg function to resistance was calculated and a temperature dependence of resistance due to electron-phonon interaction was found.

  相似文献   

5.
《Current Applied Physics》2019,19(11):1252-1258
Spin valves with nanostructure CoFe/Dy/CoFe and three-layer structures metal/Dy/metal were prepared by magnetron sputtering. The measurements of field dependences of magnetoresistance and magnetization were held at different temperatures. The changes of magnetotransport properties of spin valve containing CoFe/Dy/CoFe structure were used for getting information on the magnetic ordering in the dysprosium layer. The characteristic changes of magnetotransport properties caused by the formation of helical ordering in dysprosium layer were detected. Special attention was paid to the estimation of Neel temperature and to the investigation of microstructure of dysprosium nanolayer.  相似文献   

6.
The magnetic susceptibility of Al-Dy alloys with the dysprosium content from 0.1 to 2.0 at % in the temperature range 300–1850 K has been studied. It is established for all compositions that the susceptibility begins to increase when the alloy temperature exceeds the melting temperature of the Al2Dy compound, and the concentration curves exhibit oscillations of the same type in the solid and liquid states. The experimental results are interpreted in terms of the existence of chains composed of Al2Dy quasi-molecules in the alloys.  相似文献   

7.
The partial phonon densities of states of iron atoms in the intermetallic compound FeSi have been measured in the temperature range 46–297 K using nuclear resonant inelastic scattering of synchrotron radiation. A significant phonon softening with increasing temperature has been established. The greatest phonon softening for iron atoms is shown to occur in the region of long-wavelength acoustic phonons, for the acoustic branches near the boundary of the Brillouin zone, and for the low-lying weakly dispersive optical branches. The results obtained are analyzed in terms of the views that relate the change in the phonon density of states of iron atoms to the temperature evolution of the electronic density of state for the compound.  相似文献   

8.
The unfilled electronic states of dysprosium submonolayer films absorbed on the W(100) surface are investigated using angle-resolved inverse photoelectron spectroscopy. It is shown that the energy position of the peak at 1.7 eV is independent of the angle of incidence of electrons onto the crystal surface. This specific feature is associated with electron transitions to the Dy 4f state located above the Fermi level. A correlation between the change in the energy position of this peak and the change in the work function with an increase in the absorbed dysprosium coverage suggests that the dipole moment of adatoms is affected by the dipole-dipole interaction.  相似文献   

9.
We have measured the relative luminescence quantum yields and luminescence lifetimes of Tb(III) and Dy(III) ions in complexes with pyrazole-5-carboxylic acids. Based on study of the time-resolved luminescence spectra of Tb(III) and Dy(III) complexes with 3-(6-benzodioxanyl)pyrazole-5-carboxylic acid, we have demonstrated the possibility in principle of determining Dy(III) in the presence of Tb(III) by separating the short-lived component of the luminescence of dysprosium, despite the practically complete overlap of the analytical bands of dysprosium by the terbium bands. This method was used to determine Dy(III) in luminescent materials: scandium borates doped with terbium and dysprosium. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 3, pp. 327–331, May–June, 2007.  相似文献   

10.
A shell model has been used to study the structure, phonon dynamics and phase coexistence of perovskite manganites RMnO3 (R=Tb, Dy, Ho). The calculated crystal structure, Raman and IR frequencies and specific heats are found to be in good agreement with the available experimental data. The phonon density of states, elastic constants, elastic stiffness, shear constants and phonon dispersion curves have been computed for these manganites. A zone center imaginary Au mode is revealed in these phonon dispersion curves, which indicates the occurrence of the metastability of the perovskite phase. The Gibbs free energy values calculated as a function of temperature and pressure for RMnO3 in the orthorhombic phase, when compared with those of the hexagonal phase, reveal the possibility of coexistence of these two phases in the present multiferroic manganites under ambient conditions.  相似文献   

11.
Rare-earth metals (REM) gadolinium and dysprosium, and also the Gd–H and Dy–H systems in which magnetic order–order and order–disorder phase transitions are accompanied by significant magnetocaloric effect, have been studied. The materials have been prepared in various structural states. It is stated that there is a substantial difference of their functional properties in the dependence on the features of the structural state and also on the existence of a gas-forming impurity. It has been proved experimentally and theoretically that the Curie temperatures of Gd samples with grain sizes of ~200 nm increases as a result of hydrogenation, while the magnetic phase transition temperatures of Dy are almost unchanged Inhomogeneities.  相似文献   

12.
13.
We present results of first principles total energy calculations of the structure, electronic and lattice dynamics for beryllium semiboride and its three ternary alloys using generalized gradient and local density approximations under the framework of density functional theory. The generalized gradient approximation is used for all compounds except MgBeB using the Perdew-Burke-Ernzehorf exchange correlation functional while local density approximations use the Perdew-Zunger ultrasoft exchange correlation functional. The calculated ground state structural parameters are in good agreement with those of experimental and previous theoretical studies. The electronic band structure calculations show that Be2B may transform to a semiconductor after Al substitution. A linear response approach to density functional theory is used to calculate phonon dispersion curves and vibrational density of states. The phonon dispersion curves of Be2B and AlBeB are positive indicating a dynamical stablility of the structure for these compounds. The phonon dispersion curves of NaBeB and MgBeB show the imaginary phonons throughout the Brillouin zone, which confirms dynamical instability as indicated in band structures for these alloys. We also present the partial phonon density of states for different species of Be2B and AlBeB to bring out the details of the participation of different atoms in the total phonon density of state, particularly the role played by Al atom. The first time calculated phonon properties are clearly able to bring out the significant effect of isoelectronic substitution in Be2B.  相似文献   

14.
Inelastic neutron scattering and nuclear resonant inelastic x-ray scattering were used to measure phonon spectra of FeV as a B2 ordered compound and as a bcc solid solution. The two data sets were combined to give an accurate phonon density of states, and the phonon partial densities of states for V and Fe atoms. Contrary to the behavior of ordering alloys studied to date, the phonons in the B2 ordered phase are softer than in the solid solution. Ordering increases the vibrational entropy by +0.22±0.03 kB/atom, which stabilizes the ordered phase to higher temperatures. First-principles calculations show that the number of electronic states at the Fermi level increases upon ordering, enhancing the screening between ions, and reducing the interatomic force constants. The effect of screening is larger at the V atomic sites than at the Fe atomic sites.  相似文献   

15.
First principles calculations of structural, electronic, elastic, and phonon properties of the intermetallic compounds FeSi and CoSi in the B2 (CsCl) structure are presented, using the pseudopotential plane-wave approach based on density functional theory, within the local density approximation. The optimized lattice constants, independent elastic constants, bulk modulus, and first-order pressure derivative of the bulk modulus are reported for the B2 structure and compared with earlier experimental and theoretical calculations. A linear-response approach to density functional theory is used to derive the phonon dispersion curves, and the vibrational partial and total density of states. Atomic displacement patterns for FeSi at the Γ, X, and R symmetry points are presented. The calculated zone-center optical phonon mode for FeSi is in good agreement with experimental and theoretical data.  相似文献   

16.
Collective intercalate models have been observed in C8Rb by neutron scattering. The partial phonon density of states for in-basal-plane Rb vibrations agrees remarkably well with a calculation treating the Rb-Rb interactions as unscreened Coulomb forces.  相似文献   

17.
The magnetization distribution, its energetic characterization by the interlayer coupling constants and lattice dynamics of (001)-oriented Fe/Pt multilayers are investigated using density functional theory combined with the direct method to determine phonon frequencies. It is found that ferromagnetic order between consecutive Fe layers is favoured, with the enhanced magnetic moments at the interface. The bilinear and biquadratic coupling coefficients between Fe layers are shown to saturate fast with increasing thickness of nonmagnetic Pt layers which separate them. The phonon calculations demonstrate a rather strong dependence of partial iron phonon densities of states on the actual position of Fe monolayer in the multilayer structure.  相似文献   

18.
In this communication, we report the effect that doping Y2BaCuO5 with Dy has on its two-dimensional (2D) magnetic structure. Pure samples at both ends of the series, as well as samples doped with 1, 5, 10 and 25% dysprosium, have been characterised using X-ray diffraction, and AC susceptibility together with neutron diffraction studies on the 1 and 5% samples, which were used to measure the magnetic ordering at low temperatures. The results show that 1% Dy is enough to disrupt the 2D magnetic ordering turning it into a 3D array. The low dysprosium concentration indicates that the 3D ordering is achieved without the existence of a rare earth magnetic sublattice. The change in the ordering temperature from 27 K for the pure Y2BaCuO5 to 16 K for the 1 and 5% Dy compounds, together with the parameters from the AC susceptibility fittings, reveal that the effect of the Dy doping affects the electronic structure of the Cu ions that become involved in the superexchange pathways. The discrepancy between the parameters obtained by the Curie-Weiss fittings of the real part of the AC susceptibility and the neutron diffraction results, shows that the exchange mechanism deviates from the mean field model for all dysprosium concentrations.  相似文献   

19.
We report the partial phonon densities of states (DOS) of iron sulfide, a possible component of the rocky planet's core, measured by the 57Fe nuclear resonant inelastic x-ray scattering and calculate the total phonon DOS under pressure. From the phonon DOS, we drive thermodynamic parameters. A comparison of the observed and estimated compressibilities makes it clear that there is a large pure electronic contribution in the observed compressibility in the metallic state. Our results present the observation of thermodynamic parameters of iron sulfide with the low-spin state of an Fe2+ ion at the high density, which is similar to the condition of the Martian core.  相似文献   

20.
The density of phonon states in amorphous germanium and silicon is calculated by statistically averaging the crystalline phonon density of states according to the radial distribution function. A simple rigid ion model is used to calculate the density of phonon states at various lattice spacings. The appropriate model parameters are obtained from the pressure dependent elastic constants and the Raman frequency. The calculated results compare favorably to experimental data obtained by infrared and Raman scattering and the results of other theoretical calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号