首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The effect the degree of hydration has on optical and electrophysical properties of water/AOT/n-hexane system is studied. It is found that AOT reverse micelles form aggregates whose dimensions grow along with the degree of hydration and temperature. Aggregation enhances their electrical conductivity and shifts the UV spectrum of AOT reverse emulsions to the red region. Four states of water are found in the structure of AOT reverse micelles.  相似文献   

2.
The interfacial localization and the ion pair formation of the positively charged dye crystal violet (CV) in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles (AOT RMs) were studied by several structural and spectroscopic techniques and by quantum chemical calculations. The size and shape of the AOT RMs in the presence of CV were investigated by small-angle X-ray scattering, showing that CV does not significantly change the RM structure. CV localization as a function of the water to surfactant molar ratio (w(0)) was characterized by H(1) and (13)C NMR, indicating the close proximity of CV to the sulfosuccinate group of AOT at small and large w(0) values. These results were confirmed by calculation of magnetic shielding constants using the gauge-independent atomic orbital method with the HF/6-31G(d) basis set. Two different types of ion pairs between AOT and CV, i.e., contact ion pair (CIPs) and solvent-separated ion pair (SSIPs), were characterized by UV-vis spectroscopy and quantum chemical calculations using the semiempirical ZINDO-CI method. In nonpolar isotropic solvents CIPs are formed with an association constant (K(ASSOC)) of 2 x 10(4) mol(-1) L in isooctane and 750 mol(-1) L in chloroform. In AOT RMs at low w(0), CV-AOT CIPs are also formed. By increasing w(0), there is a sharp decrease in the CIP association free energy, and SSIPs are formed. (CV(+))(H(2)O)(AOT(-)) SSIPs are stable in the AOT RM up to the largest w(0) tested (w(0) = 33).  相似文献   

3.
In this paper, for the first time, we report a detailed study of the temperature-dependent solvation dynamics of a probe fluorophore, coumarin-500, in AOT/isooctane reverse micelles (RMs) with varying degrees of hydration (w0) of 5, 10, and 20 at four different temperatures, 293, 313, 328, and 343 K. The average solvation time constant becomes faster with the increase in w0 values at a particular temperature. The solvation dynamics of a RM with a fixed w0 value also becomes faster with the increase in temperature. The observed temperature-induced faster solvation dynamics is associated with a transition of bound- to free-type water molecules, and the corresponding activation energy value for the w0 = 5 system has been found to be 3.4 kcal mol-1, whereas for the latter two systems, it is approximately 5 kcal mol-1. Dynamic light scattering measurements indicate an insignificant change in size with temperature for RMs with w0 = 5 and 10, whereas for a w0 = 20 system, the hydrodynamic diameter increases with temperature. Time-resolved fluorescence anisotropy studies reveal a decrease in the rotational restriction on the probe with increasing temperature for all systems. Wobbling-in-cone analysis of the anisotropy data also supports this finding.  相似文献   

4.
The micropolarity of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles prepared in supercritical ethane and near-critical propane has been determined in terms of a solvent polarity parameter, E T(30) values, by using absorption probes, 1-ethyl-4-methoxycarbonyl pyridinium iodide and 2,6-diphenyl-4-(2,4,6-triphenylpyridinio)-phenolate as a functions of pressure and the molar ratio of water to AOT, W 0, at a constant temperature of 310 K. The micropolarity comparable to that of ethanol was observed for reverse micelles containing water of W 0 = 2. The micropolarity increased with the water content and became independent of pressure after the system changed to a one-phase reverse micelle solution. For a given W 0 value, no difference in the micropolarity was noticed in the micelles prepared in ethane and propane. Phase behaviour investigations have revealed that complete dissolution of 50 mM AOT occurred at 20 MPa in supercritical ethane, while a much lower pressure of 1 MPa was required in near-critical propane. The amount of water solubilized in reverse micelles formed in supercritical ethane was relatively low, reaching a W 0 value of 7 at 36 MPa. In contrast, the amount of water solubilized in near-critical propane reverse micelles was W 0 = 11 at a much lower pressure of 6 MPa. A higher pressure was required to solubilize larger amount of water in reverse micelles prepared in both ethane and propane. Received: 9 October 1998 Accepted in revised form: 12 February 1999  相似文献   

5.
The ternary system Ni(2+)(AOT)(2) (nickel 2-bis[2-ethylhexyl] sulfosuccinate)/water/isooctane presents w/o and o/w microemulsions with a Winsor progression (2Phi-3Phi-2Phi), without the addition of salt; the "fish diagram" was obtained for alpha=0.5 and gamma=0.02-0.22. Using static and dynamic light scattering the micellar size, the ratio of water to surfactant, and the density of micelles for this system were estimated. In addition, the mean interfacial curvature as a function of temperature was obtained.  相似文献   

6.
Photoisomerization of two carbocyanine derivatives has been examined in bis(2-ethylhexyl) sodium sulfosuccinate (AOT) reverse micelles to understand the factors that govern this process in the interfacial region of organized assemblies. To this effect, fluorescence lifetimes and quantum yields of 3,3(')-diethyloxadicarbocyanine iodide and merocyanine 540 have been measured in AOT∕isooctane∕water and AOT∕cyclohexane∕water reverse micellar systems as a function of the mole ratio of water to the surfactant, W. The nonradiative rate constants, which have been identified as the rates of photoisomerization for these solutes, were obtained from the experimentally measured parameters. The steady rise and subsequent saturation observed in the nonradiative rate constants upon increasing W has been rationalized in terms of micellar packing. An inverse correlation has been obtained between the nonradiative rate constants and the critical packing parameter, indicating that the interfacial friction experienced by the solute molecule is essentially described by this parameter.  相似文献   

7.
We have investigated the interaction of two water-soluble free-base porphyrins (negatively charged meso-tetrakis(p-sulfonatophenyl)porphyrin sodium salt (TSPP) and positively charged meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMpyP)) with two drug-carrier proteins (human serum albumin (HSA) and beta-lactoglobulin (betaLG)) in bis(2-ethylhexyl)sulfosuccinate (AOT)/isooctane/water reverse micelles (RM) by using steady-state and transient-state fluorescence spectroscopy. TSPP exhibited a complex pattern of aggregation on varying the RM size and pH in the absence of the protein: at low omega0 (the ratio of water concentration to AOT concentration, the emission of H-aggregates prevails under acidic or neutral "pH(ext)" conditions. Upon formation of the water-pool, J-aggregates and monomeric diacid species dominate at low "pH(ext)" but only monomer is detected at neutral "pH(ext)". The aggregation number increases with omega0 and the presence of the protein does not seem to contribute to further growth of the aggregate. The presence of protein leads to H-deaggregation but promotes J-aggregation up to a certain protein/porphyrin ratio above which, complexation with the monomer bound to a hydrophobic site of the protein prevails. The effective complex binding constants are smaller than in free aqueous solution; this indicates a weaker binding in these RM probably due to some conformational changes imposed by encapsulation. Only a weak quenching of TMpyP fluorescence is detected due to the presence of protein in contrast to the negative porphyrin.  相似文献   

8.
Two cationic peroxidases isolated from Vaccinium myrtillus were encapsulated in reverse micelles of bis(2-ethylhexyl)sodium sulfosuccinate/isooctane. By using a central composite design, some relevant parameters for the enzymatic activity, such as surfactant and water concentration, pH, and buffer molarity, were analyzed. With the results obtained from this experimental planning, the response surface curves were established. The maximum specific activity obtained (0.19 mM/min · mM of enzyme) was approximately the same for both peroxidases, but the experimental conditions under which this value was attained differed considerably.  相似文献   

9.
The state of acrylamide confined within dry sodium bis(2-ethylhexyl)sulfosuccinate (AOT) and lecithin reversed micelles dispersed in CCl(4) has been investigated by FTIR and (1)H NMR spectroscopy. Measurements have been performed at 25 degrees C as a function of the acrylamide-to-surfactant molar ratio (R) at a fixed surfactant concentration (0.1 mol kg(-1)). The analysis of experimental data, corroborated by the results of SAXS measurements, is consistent with the hypothesis that acrylamide is quite uniformly distributed among reversed micelles mainly located in proximity to the surfactant head-group region and that its presence induces significant unidimensional growth of micellar aggregates. Moreover, the confinement of acrylamide within reversed micelles involves some changes of the typical H-bonded structure of pure solid acrylamide attributable to the establishment of system-specific acrylamide/surfactant head group interactions. Preliminary experiments showed that, by exposure to X-rays, the polymerization of acrylamide can be induced in the confined space of dry AOT and lecithin reversed micelles.  相似文献   

10.
A wide investigation of the solubilization of the water-soluble salt Co(NO3)2 in water/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/n-heptane microemulsions and of some physicochemical properties of the Co(NO3)2/AOT/n-heptane and Co(NO3)2/AOT systems has been carried out. After saturation of water/AOT/n-heptane microemulsions with pure Co(NO3)2, the Co(NO3)2/AOT composites were prepared by complete evaporation under vacuum of the volatile components (water and apolar solvent) of the salt-containing microemulsions. It was observed that these composites could be totally dissolved in pure n-heptane, allowing the solubilization of a noticeable amount of Co(NO3)2 in a dry apolar organic solvent. By UV-vis-near-IR spectrophotometry, some information on the state of Co(NO3)2 within water-containing or dry AOT reversed micelles was acquired, whereas by small-angle X-ray scattering it the occurrence of small nanoparticles in the salt-containing dry AOT reversed micelles was ascertained. Surprisingly, the analysis of the X-ray diffraction spectra corroborated by UV-vis and X-ray photoelectron spectroscopy data of Co(NO3)2/AOT composites led to the hypothesis that nanoparticles are mainly constituted of sodium nitrate resulting from the metathesis reaction between AOT and Co(NO3)2. By transmission electron microscopy, information on the size and the size distribution of the nanoparticles in salt/AOT composites was gained.  相似文献   

11.
The dependence of the differential capacitance (C) of the electrode double layer of a hanging mercury drop electrode in bis (2-ethylhexyl) sodium sulfosuccinate (AOT) solutions on electrode potential (E) and time is measured using three-dimensional phase sensitive ac voltammetry. This methodology, possessing a very wide time window that permits a detailed study of the adsorption phenomena, is based on the reconstruction of C vs E curves, sampled after many phase-sensitive ac chronoamperometric experiments. The shape of these curves allows an estimation of the structure of the layer of AOT molecules absorbed at the electrode surface. AOT molecules form micelles in bulk solutions and they also associate in the charged interface under the strong influence of the electric field into surface aggregates which depend on their concentration and applied potential. The presence of AOT micelles in the bulk solution can be linked with the appearance of a surface film at potentials more negative than those corresponding to a condensed film linked with a capacitance value slightly higher than that normally attributed to a compact layer. The whole phenomenon is proved to be very dependant upon time.  相似文献   

12.
The ternary phase diagram for the orange essential oil (OEO)/sodium bis(2-ethylhexyl)sulfosuccinate (AOT)/water system was constructed at 25 °C. It indicates a large single phase region, comprising an isotropic water-in-oil (W/O) microemulsion (ME) phase (L2), a liquid crystal (LC) (lamellar or hexagonal) and a large unstable emulsion phase that separates in two phases of normal and reverse micelles (L1 and L2). In this communication the properties of the ME are investigated by viscosity, electric conductivity and small angle X-ray scattering (SAXS) indicating that the isotropic ME phase exhibits different behaviors depending on composition. At low water content low viscous “dry” surfactant structures are formed, whereas at higher water content higher viscous water droplets are formed. The experimental data allow the determination of the transition from “dry” to the water droplet structures within the L2 phase. SAXS analyses have also been performed for selected LC samples.  相似文献   

13.
Assembling and chelating properties of sodium bis(2-ethylhexyl)sulfosuccinate (AOTNa) towards divalent metal ions have been investigated in the gas phase by electrospray ionization mass spectrometry. A variety of positively charged monometallated and mixed metal aggregates are formed. Interestingly, several ions contain solvent (MeOH, H(2)O) molecules and constitute the most abundant AOT cationic aggregates not containing sodium. These species are the first example of solvated AOT-metal ion aggregates in the gas phase. By increasing the surfactant aggregation number, the abundance of solvated species becomes lower than that of unsolvated ones. Decompositions of ionic species have been studied by tandem mass spectrometry, and their stability has been determined through energy resolved mass spectrometry. In contrast with positively charged AOT-alkaline metal ion aggregates, whose decompositions are dominated by the loss of individual surfactant molecules, AOTNa-divalent ion aggregates mainly dissociate through the cleavage of the AOT H(2)C-O bond followed by further intramolecular fragmentations. This finding, that is consistent with an enhanced chelation of divalent ions with AOT(-) head groups, has been taken as an indication that such aggregates are characterized by a reverse micelle-like organization with a ionic core formed by the metal cations interacting with the negatively charged surfactant polar heads, whereas the surfactant alkyl chains point outside.  相似文献   

14.
The micellization process of sodium bis(4-phenylbutyl) sulfosuccinate (SBPBS) has been studied compared to that of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) by surface tension, steady-state fluorescence, microcalorimetry, dynamic light scattering (DLS), and transmission electron microscopy (TEM) measurements. Meanwhile, the interaction of these two surfactants with hydrophobically modified poly(acrylamide) (HMPAM) was investigated. The results show that the surface tension at the critical micelle concentration (cmc) of SBPBS and the micropolarity probed by pyrene in SBPBS aggregates are both larger than those of AOT. The enthalpy change of micellization (DeltaH(mic)) of AOT is endothermic, while it is exothermic for SBPBS. Strong pi-pi interaction among the adjacent phenyl groups of SBPBS molecules is likely the cause for the above properties of SBPBS. Moreover, vesicles are observed for AOT and SBPBS by DLS and TEM, especially for AOT, whose micelle-vesicle transition has been first confirmed by its calorimetric curve. In the surfactant-HMPAM systems, the critical aggregation concentration (cac), the saturation concentration of aggregation (C(2)), and the thermodynamic parameters of binding have also been determined. The conclusion may be drawn that the binding strength of SBPBS onto HMPAM is stronger than that of AOT.  相似文献   

15.
A hygroscopic and polymerizable salt ([2-methacryloyloxy]ethyl trimethylammonium chloride) is used to ion exchange the sodium ion in AOT (bis[2-ethylhexyl]sulfosuccinate, sodium salt) to produce a polymerizable form of AOT, MDOS ([2-methacryloyloxy]ethyl trimethylammonium bis[2-ethylhexyl]sulfosuccinate). A partial ternary phase diagram of water, MDOS, and methyl methacrylate (MMA) was determined at room temperature (22 +/- 1 degrees C). A relatively large L2 domain is obtained, but this domain is smaller than that obtained with AOT. Microemulsion polymerization in this domain at 70 degrees C, using AIBN (azoisobutyronitrile) as an initiator, produces an optically clear copolymer solid domain nearly as large as the L2 domain. This interesting behavior contrasts with similar studies of Pavel and Mackay [Langmuir 2000, 16, 8528] using a polymerizable surfactant DDAMA (didecyldimethylammonium methacrylate) that produced a much larger L2 domain than MDOS but yielded a much smaller optically clear domain after thermally initiated polymerization. Thermogravimetric analysis indicates that optically clear composites obtained at an MDOS/MMA weight ratio of 1:4 and containing 5% water (w/w; weight % water in microemulsion) released the water in a transition commencing around 160 degrees C and continuing to 250 degrees C. Thereafter, the thermal decomposition was substantially impeded relative to poly(methyl methacrylate) as a control, which was due to the fire-resistant nature of the MDOS monomer. Molecular weight measurements indicate MDOS/MMA copolymers form substantially higher molecular weights as the proportion of MDOS increases. At a given radius of gyration, higher MDOS-containing copolymers exhibit higher molecular weights, suggesting a more compact structure with increasing MDOS.  相似文献   

16.
A change in the reactivity of ethyl p-nitrophenyl chloromethylphosphonate in the sodium bis(2-ethylhexyl)sulfosuccinate-n-nonane-water system around the percolation threshold was found. Study of location sites of the reactants by NMR self-diffusion and optical spectroscopy and modeling of the kinetic data in terms of the pseudophase approach demonstrated that below the percolation threshold, the reaction occurs in the surface layer. The observed rate constant for substrate hydrolysis in a microemulsion below the percolation threshold is described by the Arrhenius equation, like that in aqueous solutions. Above the percolation threshold, the slope of the Arrhenius plot sharply changes, which is apparently due to a change in the reactant location pattern and, hence, the microscopic properties of the medium in the region of their solubilization. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1407–1414, June, 2005.  相似文献   

17.
Capillary electrokinetic chromatography is suitable for the separation of mixtures of uncharged and charged solutes. In the present work the behavior of six synthetic food antioxidants--2[3]-tert.-butyl-4-hydroxyanisole, 2,6-di-tert.-butyl-p-cresol, tercbutylhydroquinone, 3,4,5-trihydroxybenzoic acid propyl ester, 3,4,5-trihydroxybenzoic acid octyl ester and 3,4,5-trihydroxybenzoic acid dodecyl ester--was studied in a capillary electrophoresis system using capillary electrokinetic chromatography with vesicles of the surfactant bis(2-ethylhexyl)sodium sulfosuccinate (AOT). Several studies aimed at calculating the critical aggregation concentration of the surfactant were conducted to check that under the conditions used the AOT was in a state of aggregation. Having checked the association shown by the surfactant, we then explored the greater or lesser capacity of the antioxidants to interact with this compound. We followed the evolution of the molecular absorption spectra of each of the antioxidants in the presence of the surfactant at different concentrations and the retention factors were calculated at different pH values. Additionally, in order to determine which species--anionic or neutral--was present at the pH of the buffer used (boric/borate), the pKa values in acetonitrile-water (20:80) were obtained. Resolution and quantification of the antioxidants demand optimization of the variables involved in the system, such as the percentage of acetonitrile, the concentration of AOT and boric/borate buffer, pH, voltage, etc. When this part of the study had been completed, calibrations were obtained for each of the antioxidants, obtaining good linear correlation coefficients in all cases. Finally, we propose a method that allows the resolution of the six most employed antioxidants in a capillary electrophoretic system in 15 min, using electrokinetic chromatography with AOT as the pseudostationary phase.  相似文献   

18.
Sodium 1,4-bis(2-ethylhexyl)sulfosuccinate (AOT) reverse micellar medium has been used to study the photoinduced electron-transfer (ET) reactions between some coumarin derivatives and amines, namely, aniline (AN) and N,N-dimethylaniline (DMAN) at different w(0) (w(0) = [water]/[AOT]) values, to explore the appearance of Marcus inversion and also the possible role of w(0), if any, on the Marcus correlation curves. The coumarin derivatives are found to partition between the heptane-like and the water-like phases of the reverse micelles, and their locations have been confirmed by time-resolved anisotropy measurements. Fluorescence quenching is found to depend both on the location of the coumarin molecules and on the hydrophobicity of the amine donors. Various aspects such as the effect of differential partitioning of the quenchers, the location of the probes in the two phases, the diffusion of the reactants in the micellar phase, etc. have been considered to rationalize the fluorescence quenching rates in reverse micelles. Rotational relaxation times and the diffusion parameters estimated from the anisotropy results do not show good correlation with the observed quenching rates indicating that the diffusion of reactants has no role in the quenching kinetics in reverse micelles. Marcus inversion behavior has been observed for the coumarin-amine systems in the water-like phase at a relatively high exergonicity of approximately 1.2 eV suggesting that the solvent reorganization energy contributes fully to the free energy of activation for the ET reactions in the present systems. This is in accordance with the fast solvent relaxation dynamics reported in reverse micelles. Quenching rates in the water-like phase are found to decrease or increase marginally with increasing w(0) for the coumarin-DMAN and coumarin-AN systems, respectively. This is explained on the basis of the changing solubility of these amines in the water-like phase with changing w(0) values of the reverse micelles. In the heptane-like phase, no clear inversion in the quenching rate versus free energy plot could be observed because the study could not be extended to higher exergonicity due to nonsolubility of the dye C151 in this phase. Present results, especially in the water-like phase, suggest that the confinement of reactants in micellar media can effectively remove the influence of reactant diffusion on bimolecular ET rates and thus make the systems more conducive for the observation of the Marcus inverted region.  相似文献   

19.
Some relevant physicochemical properties of 5-aza[5]helicene (H5) in solutions of ytterbium bis(2-ethylhexyl) sulfosuccinate (Yb(DEHSS)3) reversed micelles have been investigated by UV-vis-NIR, photoluminescence, and FT-IR techniques with the aim of emphasizing the role played by specific Yb(III)/H5 interactions and confinement effects as driving forces of its binding to reversed micelles, preferential solubilization site, and local photophysical properties. It has been found that the binding strength of 5-aza[5]helicene to reversed micelles, triggered by steric and orientational constrains as well as the water content, is mainly regulated by its interaction with the Yb(III) counterion. Moreover, when H5 is entrapped in Yb(DEHSS)3 reversed micelles, the combined action of this interaction and of confinement effects leads to marked changes of its photophysical properties with respect to those of H5 molecularly dispersed in apolar medium. The influence of the entrapment of finite amounts of H5 on the reversed micelle structure was investigated by SAXS. The analysis of experimental results brings to the hypothesis that H5 is preferentially solubilized and opportunely oriented in the micellar palisade layer and that its insertion causes an unidimensional growth of reversed micelles. From an analysis of WAXS spectra of H5/Yb(DEHSS)3 composites, obtained by complete evaporation of the volatile components of the H5/water/Yb(DEHSS)3/n-heptane solutions, it was ascertained that also on these systems H5 is dispersed molecularly or in a quite amorphous state in the surfactant liquid crystals without forming a separate crystalline nanophase.  相似文献   

20.
Adsorption of sodium bis(2-ethylhexyl) sulfosuccinate (Aerosol OT) and silver and gold nanoparticles on SiO2 from heptane solutions has been investigated by spectophotometery and CHN analysis. The adsorption isotherm of Aerosol OT is described by the Langmuir equation. Sorption capacity (2.4 × 10–4 mol/g), sorption constant (9.0 m3/mol), and area per Aerosol OT molecule in an adsorption layer (0.83 nm2) have been determined. It has been shown that, at Aerosol OT concentrations lower than 6 × 10–4 M, gold and silver ((0.3–6) × 10–4 M) are simultaneously extracted by 98%; however, they have no effect on the adsorption and determination of the surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号