首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 374 毫秒
1.
本文系统研究了R2Fe17C(R=Y.Sm,Gd,Tb.Dy,Er)化合物的结构与内禀磁性,并与相应的R2Fe17化合物进行了比较。R2Fe17C的居里温度比相应R2Fe17的居里温度增加大约200K。本文讨论了C原子对该化合物结构与磁性的影响,同时,还对Sm2(Fe1-xCox 关键词:  相似文献   

2.
胡伯平  张寿恭 《物理学报》1987,36(9):1177-1181
本文对R13Fe74Si13(R=Ce,Pr,Nd,Gd,Tb,Dy,Ho,Er,Y)三元合金的结构和磁性进行了研究。结果表明,R13Fe74Si13的主相为R2(Fe0.85Si0.1517赝二元金属间化合物,而不出现类似于R2Fe14B的三元 关键词:  相似文献   

3.
杨应昌  徐立刚  李学东 《物理学报》1986,35(8):995-1001
本文研究了Al在R2(Fe1-xAlx)14B多元合金中的固溶度(R=Nd和Y),当x<0.1时,可形成四方结构。研究了在此类合金中,饱和磁化强度、居里温度、磁晶各向异性等内禀磁性,以及矫顽力和磁能积等永磁性能随Al含量的变化。发现以Al代换Fe时,使铁次点阵的磁晶各向异性出现极值;同时以Al代换Fe时,可使磁体的矫顽力显著提高。以Co和Al同时对Fe进行代换,制造成分约为Nd16.5B 关键词:  相似文献   

4.
The magnetic properties (magnetic ordering temperature, magnetization) of the ferrimagnetic compounds R 2Fe17 and RFe11Ti, as well as of their hydrides and nitrides, were studied. The hydrogenation-and nitrogenation-induced variation of the exchange fields acting on the rare-earth (RE) ions from both the Fe sublattice and other RE ions was determined, and the dependence of the Curie temperatures of the starting compounds, their hydrides, and nitrides on the de Gennes factor was revealed. It was found that incorporation of light atoms (H, N) into the crystal lattices of RFe11Ti and R 2Fe17 increases the Curie temperature T C substantially, increases the Fe-Fe exchange coupling, and decreases the R-R exchange interactions, as well as increases the R-Fe intersublattice exchange under hydrogenation and decreases it under nitrogenation, an effect that can be understood as resulting from the attendant changes in the electronic structure of these compounds and in the indirect exchange interactions. __________ Translated from Fizika Tverdogo Tela, Vol. 45, No. 10, 2003, pp. 1850–1856. Original Russian Text Copyright ? 2003 by Nikitin, Tereshina.  相似文献   

5.
We found that the nitrogen atoms can enter into the R2Fe14B structure by a proper heat treatment in nitrogen atmosphere. The crystallographic structure and magnetic properties of R2Fe14BNx, R =Nd and Y, have been investigated by using X-ray and neutron diffraction techniques as well as magnetic measurements. The neutron diffrac-tion data show that the nitrogen atoms occupy the 4f interstices. The interstitial nitrogen atoms were found to have an effect of enhancing Curie temerature, whereas, decreasing saturation magnetization and magneto-crystalline anisotropy. The rela-tionship of the crystal structure and the intrinsic magnetic properties of this crystal is discussed.  相似文献   

6.
The crystal and magnetic structures of Nd2Fe14Si3 at room temperature were refined by Rietveld analysis of neutron-powder-diffraction data. It was found that silicon atoms occupy preferentially both 18h and 18f of Th2Zn17-type structure with occupancies 0.36 and 0.14, respectively, The Fe-Fe bond-lengths computed with the refined crystallographic parameters have optimum values, as compared with those of Nd2Fe17 compounds, which can explain well why the Curie temperature rises strongly when the unit cell volume reduces with the substitution of silicon for iron in Nd2Fe17.  相似文献   

7.
The crystallographic and magnetic structures of Nd2Fe17Nx(x = 2.5, 3.0, 5.5) at room temperature were refined by Rietveld analysis of neutron powder diffraction data. We found that Nd2Fe17Nx has a Th2Zn17 type structure (S.G. R3m) and the nitrogen atoms occupy both 9e and 18g sites simultaneously and at different rates.  相似文献   

8.
Ho2Fe17Cx的结构与磁性   总被引:1,自引:0,他引:1       下载免费PDF全文
用快速急冷方法制备了Ho2Fe17Cx化合物,研究了它们的形成、结构与磁性。这些化合物在高温下是稳定的,随C含量的增加,晶体结构由六角Th2Ni17型转变为菱形Th2Zn17型。测量了Ho2Fe17Cx化合物在1.5K和室温下的饱和磁化强度,得到每个Fe原子磁矩近似与C含量无关。C原子的引 关键词:  相似文献   

9.
陈怡  申江 《物理学报》2009,58(13):146-S150
RFe2Zn20R代表稀土元素)型稀土金属间化合物因其低稀土含量和良好的铁磁性,已成为铁磁材料的研究热点之一.添加第四组元对该系列化合物的晶体结构和材料性能会产生一定影响.利用晶格反演方法获得了一系列有效的原子间相互作用势,对三元RFe2Zn20和四元RFe2Zn20-xInx化合物进行原子级模拟计算.研究表明,随着稀土元素原子量的增加,三元体系的晶格参数和体积呈线性下降,第四组元引入与否对该线性关系无直接影响.第四组元In替代Zn时,择优占据16c晶位,占满16c后选择占据96g晶位,始终不占据48f晶位.择优占位的结论符合实验观测,并与晶格反演势分析的结果一致. 关键词: 原子间相互作用势 择优占位 晶体结构  相似文献   

10.
The newly developed full-potential linearized augmented plane wave (LAPW) and local orbitals (lo) based on standard APW methods are briefly introduced, and the structure and magnetic properties of R(Fe, Si)12 compounds (R = Y, Nd) are calculated using the method. The distribution of Si at different sites is analyzed based on total energy of one crystal unit with structure having been optimized. The characters of magnetic moments, total density of states (TDOS) and partial density of states (PDOS) for different crystal sites Si occupies are obtained and analyzed. The results show that the total magnetic moments of RFe10Si2 (R = Y, Nd) are larger than those of RFe10 M 2 (M = Ti, V, Cr, Mn, Mo and W) and the hybridization mechanism is seen as follows. Si(8j) reduce the magnetic moments of Fe at three sites, however, Si(8f) mainly reduce the magnetic moments of Fe(8i) and Fe(8j) atoms. The Curie temperature is markedly enhanced by the introduction of Si atoms according to spin fluctuation of DOS at Fermi level.  相似文献   

11.
The Mn5?xFexGe3 intermetallic compounds are investigated with X-ray, neutron diffraction, magnetometric and Mössbauer effect methods. It is found that crystal structure of x = 1 compound is of D88 type while the structure of x = 3, 4 and 5 compounds is of B82 type. All are ferromagnets with collinearly ordered atomic spins. The lattice constants are derived from X-ray diffraction patterns, while magnetometric measurements yield the Curie temperatures and Weiss constants as well as the values of magnetic moments per molecule in ferromagnetic and paramagnetics states. The distributions of Fe and Mn atoms among two non-equivalent crystal sites are determined with the neutron diffraction method and are confirmed by the Mössbauer effect measurements. The parameters of hyperfine interactions are derived from Mössbauer absorption spectra and are attributed to iron atoms in two non-equivalent crystal sites.  相似文献   

12.
The potential relevance of the Ba3NbFe3Si2O14 langasite in the field of multiferroism was investigated. Interesting properties were expected, in particular in view of the frustrating stacking of its magnetic Fe3+ cations into triangular planes of triangle units. We hereafter report results of specific heat and magnetic measurements, Mössbauer spectroscopy and neutron diffraction. A peculiar magnetic structure is found out at low temperature. The Fe3+ magnetic moments adopt a triangular 120° configuration within each triangle, which is in-phase propagated in each triangular plane and is helically modulated from plane to plane.  相似文献   

13.
Crystallographic and magnetic properties of a new structural series of ternary borides with composition R1+εFe4B4 (R = Ce, Pr, Nd, Sm, Gd, Tb, 0.11(Pr) ≤ε≤ 0.15(Tb) are reported. The compounds are built of incommensurate substructures of rare earth atoms (linear strings ?? c?), iron atoms (chains of edge sharing tetrahedra ?? c?),and boron atom pairs. A single crystal X-ray diffraction study of one representative (Sm1.13Fe4B4) based on a commensurate structure model (composition : Sm17(Fe4B4)15, a = 7.07 Å, c ≡ 17cSm ≡ 15cFe= 58.69 Å, space group P42/n) revealed a periodic twist modulation of the Fe tetrahedra chains around c?. Magnetic susceptibility measurements on single crystals of another representative (Nd1.11Fe4B4) revealed ferromagnetic ordering at Tc = 13 K. Above this temperature the magnetic properties are dominated by ferromagnetic inclusions (Fe2B, Nd2Fe14B).  相似文献   

14.
The effect of high pressure on the crystal structure of the intermetallic compounds R2Fe17 − x Six (R = Lu or Y; x = 0 or 1.7) was studied using neutron diffraction. A correlation between changes in structural parameters and magnetic properties under the action of high pressure, as well as under chemical substitution of Si for Fe atoms, was analyzed in terms of localized moment and spin fluctuation models. The spin fluctuation model was found to describe more adequately the experimentally observed increase in the Curie temperature upon chemical substitution and the decrease in this temperature under the action of high pressure. Possible reasons for the suppression of a collinear ferromagnetic state and the occurrence of a noncollinear antiferromagnetic state in R2Fe17−x Six under pressure are discussed based on estimated differences between the total energy minima of these states. Original Russian Text ? D.P. Kozlenko, V.I. Voronin, V.P. Glazkov, B.N. Savenko, 2007, published in Pis’ma v Zhurnal éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2007, Vol. 86, No. 9, pp. 675–680.  相似文献   

15.
The crystal and magnetic structures of the composite compound Nd2Co6Fe have been investigated by high-resolution neutron powder diffraction and X-ray powder diffraction. The compound crystallizes in the hexagonal Ce2Ni7-type structure consisting of Nd(Co,Fe)2 and Nd(Co,Fe)5 structural blocks alternately stacked along the c-axis. Multi-pattern Rietveld refinement of neutron diffraction and X-ray diffraction data at room temperature reveal that substitution of Fe for Co occurs exclusively in the Nd(Co,Fe)5 structural blocks. The preferential occupation of the Fe atoms in the structure is discussed based on the mixing enthalpy between Nd and Fe atoms and on the lattice distortions. In agreement with the reported magnetic phase diagram of the Nd2Co7−xFex compounds, magnetic structure models with the moments of all atoms in the ab plane at 300 K and along the c-axis at 450 K provide a satisfactory fitting to the experimental neutron diffraction data. The refinement results show that the atomic moments of (Co,Fe) atoms within the Nd(Co,Fe)5 blocks decrease slightly with temperature, whereas the atomic moments of Nd in the compound and of (Co,Fe) atoms at the interface between the Nd(Co,Fe)2 and Nd(Co,Fe)5 blocks are reduced significantly.  相似文献   

16.
The crystal and magnetic structures of KFeO2 have been determined by neutron and X-ray powder-diffraction and Mössbauer-effect techniques. The crystal structure at 4.2 K and 300 K is orthorhombic and the magnetic space group is Pbca'. The Fe3+-ions in this structure are tetrahedrally coordinated by oxygen ions, and each Fe3+-ion has a magnetic moment which is antiferromagnetically coupled to the moments of four Fe3+-neighbours. The direction of the moments is parallel to the a-axis. A crystal phase transition has been observed near the Néel temperature?960 K.  相似文献   

17.
It is difficult to obtain the crystallographic alignment for stoichiometric Nd2Fe14B alloys by applying the melt-spun and subsequent hot-pressing and hot-deformation techniques. However, the enhanced alignment and magnetic properties of die-upset nano-crystal Nd2Fe14B magnets have been obtained by Nb addition in the present paper. The magnetic properties studies show that Nb addition leads to the remarkable increase of remanence Br and intrinsic coercivity Hci, which is due to the improvement of c-axis texture and refinement of microstructure. Microstructure studies using transmission electron microscopy (TEM) and X-ray diffraction (XRD) reveal that Nb atoms are enriched at grain boundary and the NbFeB phase is observed with increasing Nb content. Since some Fe atoms in the Nd2Fe14B phase participate in the formation of NbFeB phase, the excessive Nd atoms may be enriched at grain boundary, which may improve the physical property of grain boundary and provide a mass transport pass for preferential growth of oriented Nd2Fe14B grains, thus leading to the enhanced alignment and magnetic properties.  相似文献   

18.
The Fe0.5TiSe2 compound with a monoclinic crystal structure has been prepared by intercalation of Fe atoms between Se-Ti-Se sandwiches in the layered structure of TiSe2. The crystal and magnetic structures, electrical resistivity, and magnetization of the Fe0.5TiSe2 compound have been investigated. According to the neutron diffraction data, the Fe0.5TiSe2 compound has a tilted antiferromagnetic structure at temperatures below the Néel temperature of 135 K, in which the magnetic moments of Fe atoms are antiferromagnetically ordered inside layers and located at an angle of approximately 74.4° with respect to the layer plane. The magnetic moment of Fe atoms is equal to (2.98 ± 0.05)μB. The antiferromagnetic ordering is accompanied by anisotropic spontaneous magnetostrictive distortions of the crystal lattice, which is associated with the spin-orbit interaction and the effect of the crystal field.  相似文献   

19.
Using first-principles calculations based on density functional theory, we investigated systematically the electronic structures and magnetic properties of Fe16N2 system and their unit cell volume dependence. It has been found that total magnetic moment increases as increasing unit cell volume of Fe16N2. In addition, it also has been found that the d electron number on Fe I, Fe II and Fe III atoms decreases as increasing unit cell volume and the local magnetic moment on Fe atoms increases with the decrease of d electron number. The present study provides a clear insight into the numerous conflicting experimental results on the magnetic properties of Fe16N2 system.  相似文献   

20.
Crystallographic and magnetic properties of PrMn2Si2, NdMn2Si2, YMn2Si2 and YMn2Ge2 intermetallics were studied by X-ray, neutron diffraction and magnetometric measurements. The crystal structure of all four compounds was confirmed to be body-centered tetragonal (space group I4/mmm). All were found to be antiferromagnetic with Néel points at 368, 380, 460 and 395 K respectively. Neutron diffraction results indicate that their magnetic structure consists of ferromagnetic layers composed of Mn ions piled up along the c-axis. Each layer is antiferromagnetically coupled to adjacent layer. The magnetic space group is Ip4/mmm′. No magnetic ordering of the R sublattice was observed at 1.8 K in the case of R = Pr and Nd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号