首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
75As-zero-field nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements are performed on CaFe2As2 under pressure. At P=4.7 and 10.8 kbar, the temperature dependence of nuclear-spin-lattice relaxation rate (1/T1) measured at tetragonal phase show no coherence peak just below Tc and decrease with decreasing temperature. The superconductivity is of gapless at P=4.7 kbar but evolves to multiple gaps at P=10.8 kbar. We find that the superconductivity appears near a quantum critical point. Both electron correlation and superconductivity disappear in the collapsed tetragonal phase. A systematic study under pressure indicates that electron correlations play a vital role in forming Cooper pairs in this compound.  相似文献   

2.
T Kohara 《Pramana》2002,58(5-6):755-760
NMR and NQR studies on two interesting systems (URu2Si2, CeTIn5) were performed under high pressure. (1) URu2Si2: In the pressure range 3.0 to 8.3 kbar, we have observed new 29Si NMR signals arising from the antiferromagnetic (AF) region besides the previously observed 29Si NMR signals which come from the paramagnetic (PM) region in the sample. This gives definite evidence for spatially-inhomogeneous development of AF ordering below T 0 of 17.5 K. The volume fraction is enhanced by applied pressure, whereas the value of internal field (∼91 mT) remains constant up to 8.3 kbar. In the AF region, the ordered moment is about one order of magnitude larger than 0.03 μB. (2) CeTIn5: The pressure and temperature (T) dependences of nuclear spin-lattice relaxation rate 1/T 1 of 115In in CeTIn5 have shown that the superconductivity (SC) occurs close to an AF instability. From the T dependences of 1/T 1 and Knight shift below T c. CeTIn5 has been found to exhibit non-s wave (probable d wave) SC with even parity and line nodes in the SC energy gap.  相似文献   

3.
Kohori  Yoh  Matsuda  Kazuyuki  Kohara  Takao 《Hyperfine Interactions》1999,120(1-8):503-506
By using nuclear quadrupole resonance (NQR), nuclear spin-lattice relaxation rate 1 /T1 of the heavy fermion superconductors (URu2Si2, UPd2Al3, CeRu2) has been measured. The NQR measurement requires no external field, and is especially suitable for 105Pd and 101Ru, which have very small nuclear gyromagnetic ratios and large electric quadrupole moments. In URu2Si2 and UPd2Al3, the absence of the Hebel–Slichter coherence peak just below the superconducting transition temperature TC and the power law temperature dependence (T3) in the superconducting state has shown appearance of anisotropic non-s-wave superconductivity. On the contrary, an exponential temperature dependence of 1/T1 was observed in CeRu2, indicating the superconductivity to be conventional s-wave. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The phase diagram of the organic superconductor (TMTSF)2PF6has been revisited using transport measurements with an improved control of the applied pressure. We have found a 0.8 kbar wide pressure domain below the critical point (9.43 kbar, 1.2 K) for the stabilisation of the superconducting ground state featuring a coexistence regime between spin density wave (SDW) and superconductivity (SC). The inhomogeneous character of the said pressure domain is supported by the analysis of the resistivity between T SDW and T SC and the superconducting critical current. The onset temperature T SC is practically constant ( 1.20±0.01 K) in this region where only the SC/SDW domain proportion below T SC is increasing under pressure. An homogeneous superconducting state is recovered above the critical pressure with T SC falling at increasing pressure. We propose a model comparing the free energy of a phase exhibiting a segregation between SDW and SC domains and the free energy of homogeneous phases which explains fairly well our experimental findings. Received 3 September 2001 and Received in final form 9 November 2001  相似文献   

5.
63Cu-NMR measurements have been performed on two-leg hole-doped spin ladders Sr14-xCaxCu24O41 single crystals 0 ? x ? 12 at several pressures up to the pressure domain where the stabilization of a superconducting ground state can be achieved. The data reveal a marked decrease of the spin gap derived from Knight shift measurements upon Ca substitution and also under pressure and confirm the onset of low lying spin excitations around P c as previously reported. The spin gap in Sr 2 Ca 12 Cu 24 O 41 is strongly reduced above 20 kbar. However, the data of an experiment performed at P = 36 kbar where superconductivity has been detected at 6.7 K by an inductive technique have shown that a significant amount of spin excitations remains gapped at 80 K when superconductivity sets in. The standard relaxation model with two and three-magnon modes explains fairly well the activated relaxation data in the intermediate temperature regime corresponding to gapped spin excitations using the spin gap data derived from Knight shift experiments. The data of Gaussian relaxation rates of heavily doped samples support the limitation of the coherence length at low temperature by the average distance between doped holes. We discuss the interplay between superconductivity and the spin gap and suggest that these new results support the exciting prospect of superconductivity induced by the interladder tunneling of preformed pairs as long as the pressure remains lower than the pressure corresponding to the maximum of the superconducting critical temperature. Received 8 March 2001 and Received in final form 27 July 2001  相似文献   

6.
Measurements of the pressure (P) dependence of the superconducting transition temperature Tc of stage-two KHgC8 are reported. Tc is found to decrease with applied pressure from a room pressure value of 1.85K at a rate dTc/dP=-6.5 × 10-5K/bar, similar to typical superconducting elements such as Sn. No superconductivity was detected for stage-one KHgC4 or K0.5Hg0.5 amalgam to a limiting temperature T = 1.3K and a limiting pressure P = 22 kbar. These results are discussed in reference to the possible occurence of structural and charge density wave transitions in these materials and recent theoretical models of superconducting graphire intercalation compounds.  相似文献   

7.
63Cu-NMR experiments of Knight shift and relaxation time T1 have been performed on the two-leg spin ladders of a Sr2Ca12Cu24O41 single crystal at several pressures up to the critical pressure for the stabilization of a superconducting ground state. The data confirm the onset of low-lying spin excitations at observed previously [Science 279, 345 (1998)] and reveal a marked decrease of the spin gap under pressures above 20 kbar although a significant fraction of the spin excitations remains gapped at kbar. A comparison between NMR and transport data under pressure suggests that the depression of the spin gap can be ascribed to an increase in the interladder exchange coupling, possibly mediated by the ladder-chain interaction along the b-direction. Received 21 October 1999  相似文献   

8.
We studied the effect of hydrostatic pressure (P) on the structural phase transitions and superconductivity in the ternary and pseudo-ternary iron arsenides CaFe2As2, BaFe2As2, and (Ba0.55K0.45)Fe2As2, by means of measurements of electrical resistivity (ρ) in the 1.8-300 K temperature (T) range, pressures up to 20 kbar, and magnetic fields up to 9 T. CaFe2As2 and BaFe2As2 (lightly doped with Sn) display structural phase transitions near 170 and 85 K, respectively, and do not exhibit superconductivity in ambient pressure, while K-doped (Ba0.55K0.45)Fe2As2 is superconducting for T<30 K. The effect of pressure on BaFe2As2 is to shift the onset of the crystallographic transformation down in temperature at the rate of ~−1.04 K/kbar, while shifting the whole ρ(T) curves downward, whereas its effect on superconducting (Ba0.55K0.45)Fe2As2 is to shift the onset of superconductivity to lower temperatures at the rate of ~−0.21 K/kbar. The effect of pressure on CaFe2As2 is first to suppress the crystallographic transformation and induce superconductivity with onset near 12 K very rapidly, i.e., for P<5 kbar. However, higher pressures bring about another phase transformation characterized by reduced-resistivity, and the suppression of superconductivity, confining superconductivity to a narrow pressure dome centered near 5 kbar. Upper critical field (Hc2) data in (Ba0.55K0.45)Fe2As2 and CaFe2As2 are discussed.  相似文献   

9.
The influence of hydrostatic pressure 0 ? p ? 4 kbar on the 35Cl NQR in K2SnCl6 was studied in the temperature range 238 K ? T ? 300 K. The phase transition temperatures TC1 and TC2 were determined from changes in the NQR line pattern.The phase boundaries in the p-T diagram are straight lines in the region studied. The pressure coefficients are given by dTC1/dP = 1.35 (10) K kbar?1 and dTC2/dP=?1.25 (20) K kbar?1.  相似文献   

10.
We have made measurements of the pressure dependence of the superconducting transition temperature, Tc, for In2Bi and related alloys. For In2Bi- phase alloys, a large discontinuity in Tc is seen at 15–20 kbar, which we associate with a phase transformation first seen by Bridgman [1]. Our measurements suggest that this transformation is produced by the decomposition of In2Bi into In5Bi3 and an In-rich phase. In the low pressure phase, Tc shows a minimum at 9–15 kbar whereas it depends linearly on pressure in the high pressure phase with ?Tc/?P equal to -4.9 × 10-5 K bar-1.  相似文献   

11.
We use neutron scattering and specific heat measurements to relate the response of the spin fluctuations and static antiferromagnetic (AF) order to the superconductivity in the electron-doped high-transition-temperature superconductor, Pr.88LaCe.12CuO4−δ (PLCCO) (Tc=24 K), as the system is tuned via a magnetic field applied beyond the upper critical field (Hc2) and driven into the normal state. The strength of the collective magnetic excitation commonly termed “resonance” decreases smoothly with increasing field and vanishes in the normal state, paralleling the behavior of the superconducting condensation energy. The suppression of superconductivity is accompanied by a smooth reduction in the very low energy spin fluctuations, and the concomitant emergence of static AF order. Our results suggest an intimate connection between the resonance and the superconducting condensation energy.  相似文献   

12.
Nuclear relaxation of 63Cu in the superconducting state of the Kondo-lattice system CeCu2Si2 has been studied with the use of the 63Cu nuclear quadrupole resonance technique under zero field and down to 65mK. The nuclear spin-lattice relaxation rate (1/T1) decreases drastically just below Tc=0.67 K down to 0.5Tc without the apparent enchanced behavior and then is found to be almost temperature independent below 0.3Tc. These results suggest that the superconductivity in CeCu2Si2 is not in the usual BCS regime. The analysis based upon the existing triplet pairing model with an anisotropic energy gap describes well the behavior from Tc down to 0.5Tc, while the temperature independence below 0.3Tc remains unexplained.  相似文献   

13.
We report experimental results of nuclear magnetic resonance (NMR) at the La site and nuclear quadrupole resonance (NQR) at the As site in the normal state of the superconducting compound LaOs4As12. Measurements have been performed on powder sample obtained from high quality single crystals. The temperature dependences of the nuclear spin-lattice relaxation rates, 1/T1, of 75As and 139La nuclei were measured. No scaling between them was found indicating a local character of relaxation processes. The relaxation of 75As nuclei can consistently be understood in terms of antiferromagnetic spin fluctuations, as deduced from the T-dependence of (1/T1T)=C/(Tθ)1/2.  相似文献   

14.
The heavy fermion state in the f-electron systems is due to competition between the RKKY interaction and the Kondo effect. The typical compound is CeCu6. To understand the electronic state, we studied the Fermi surface properties via the de Haas–van Alphen (dHvA) experiment and energy band calculation for CeSn3,CeRu2Si2,UPt3, and nowadays, transuranium compounds. Pressure is also an important technique to control the electronic state. The Néel temperature TN decreases with increasing pressure P and becomes zero at the critical pressure for . The typical compound is an antiferromagnet CeRhIn5, which we studied from the dHvA experiment under pressure. A change of the 4f-electronic state from localized to itinerant is realized at , revealing the first-order phase transition, together with a divergent tendency of the cyclotron mass at Pc. It is stressed that appearance of superconductivity in CeRhIn5 is closely related to the heavy fermion state. It is also noted that the parity-mixed novel superconducting state might be realized in a pressure-induced superconductor CeIrSi3 without inversion symmetry in the crystal structure.  相似文献   

15.
The magnetic and superconducting properties in the high-T c cuprates have been investigated over a wide hole doping range by63Cu,17O and205Tl NMR and NQR in the lightly-doped La2?xSrxCuO4 (LSCO), the heavily-doped Tl2Ba2CuO6+y (TBCO) and the Zn-doped YBa2Cu3O7 (YBCO7). In low doping region, the large antiferromagnetic (AF) spin correlation around the zone boundary (q=Q) causes the Curie-Weiss behavior of63(1/T 1 T) associated with that of the staggered susceptibility χO(T) in LSCO. In the vicinity of the hole content whereT c has a peak, the AF spin correlation still survives, although the magnetic coherence length ξM is considerably short being presumably (ξM/a) ~ 1. The further doping destroys progressively the AF spin correlation, which is no longer present is non-superconducting TBCO compounds. These NMR evidences signify that there is an intimate relation between the presence of the AF spin correlation and the onset of the superconductivity. The local collapse of AF spin correlation is a primary cause for the unexpected strong reduction ofT c in case of the substitution of Zn impurities into the CuO2 plane. The superconducting properties clarified by NMR experiments cannot be accounted for by the conventional BCS model or other isotropic s-wave models. A d-wave model is applicable in interpreting consistently most of the NMR results, if the finite density of states at the Fermi level is taken into consideration and is associated with the pair breaking effect. There are increasing evidences that the magnetic mechanism for the superconductivity is promising in high-T c cuprates.  相似文献   

16.
In this paper the low-temperature properties of two isostructural canonical heavy-fermion compounds are contrasted with regards to the interplay between antiferromagnetic (AF) quantum criticality and superconductivity. For CeCu2Si2, fully-gapped d-wave superconductivity forms in the vicinity of an itinerant three-dimensional heavy-fermion spin-density-wave (SDW) quantum critical point (QCP). Inelastic neutron scattering results highlight that both quantum critical SDW fluctuations as well as Mott-type fluctuations of local magnetic moments contribute to the formation of Cooper pairs in CeCu2Si2. In YbRh2Si2, superconductivity appears to be suppressed at T???10?mK by AF order (TN?=?70?mK). Ultra-low temperature measurements reveal a hybrid order between nuclear and 4f-electronic spins, which is dominated by the Yb-derived nuclear spins, to develop at TA slightly above 2?mK. The hybrid order turns out to strongly compete with the primary 4f-electronic order and to push the material towards its QCP. Apparently, this paves the way for heavy-fermion superconductivity to form at Tc?=?2?mK. Like the pressure – induced QCP in CeRhIn5, the magnetic field – induced one in YbRh2Si2 is of the local Kondo-destroying variety which corresponds to a Mott-type transition at zero temperature. Therefore, these materials form the link between the large family of about fifty low-T unconventional heavy – fermion superconductors and other families of unconventional superconductors with higher Tcs, notably the doped Mott insulators of the cuprates, organic charge-transfer salts and some of the Fe-based superconductors. Our study suggests that heavy-fermion superconductivity near an AF QCP is a robust phenomenon.  相似文献   

17.
The pressure dependence of the superconducting transition temperatureT c (p) of α-Zr has been investigated in both solid and liquid pressure transmitting media. Up to about 45 kbardT c /dp was measured to be + 3.5 × 10?6 K/bar. Cold working at 4.2 K produced a strong irreversible effect onT c . The superconductivity of the high pressure phase, ω-Zr, has been studied in its region of stability, i.e. above 60 kbar. For ω-Zr,dT c /dp=+7.7 × 10?6K/bar, andT c (0)=0.72 K (by extrapolation).  相似文献   

18.
Abstract

We report here a calculation of the band structure and superconductivity of Arsenic in the simple cubic phase under pressure. The effect of pressure on the band structure is obtained using Andersen's linear muffin-tin orbital method under atomic sphere approximation. McMillan's formula is used to calculate the superconducting transition temperature (Tc). The theoretically calculated valve of Tc in sc phase at 26.6 GPa is 3.62 K. Further increase in pressure decreases the Tc values.  相似文献   

19.
Nuclear quadrupole resonances (NQR) of139La in La2−xMxCuO4 (M=Ba, Sr) and63Cu in YBa2CU3O7 have been investigated with substitution of Cu by magnetic impurities. For La-system, the strong enhancement of the nuclear relaxation rate, 1/T 1 atT c *≈10 K (suggesting the occurrence of magnetic instability with hole-doping), is suppressed by 3D-antiferromagnetism induced by magnetic impurities. In the superconducting region, fluctuations of Cu moments at low temperatures remain extremely fast as at high temperatures. For Y-system, Fe-ions are substituted for both Cu(1) and Cu(2) sites, But Co-ions are preferentially substituted to Cu1 sites. The peaks in the relaxation rate of Cu indicate the appearance of magnetic ordering without destroying superconductivity for the 0.5%-Fe doped sample.  相似文献   

20.
The superconducting transition temperature, Tc, of NaCl structure compounds in the series Ag1?xSn1+xSe2 is found to be exceptionally sensitive to hydrostatic pressures up to 21 kbar. For five samples of varying composition, Tc is suppressed smoothly at a rate of ?(6?8)×10?5K·bar?1. These results are discussed with respect to the volume sensitivity of the electron-phonon interaction responsible for superconductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号