首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
二元或多元聚合物组成的本体异质结具备高度稳定的微相分离形貌,带来潜在的器件寿命和稳定性方面的巨大优势,全聚合物活性层器件因而成为有机太阳能电池的重要发展方向和研究内容.本文系统介绍近年来苝二酰亚胺类聚合物受体的研究进展,以及将这类聚合物受体应用于全聚合物太阳能电池所取得的重要成果.通过多种不同共聚单元结构的设计和筛选、主链和侧链化学结构的调控和优化,获得了一系列性能优越的苝二酰亚胺聚合物受体,这些材料的运用大幅度地提升了全聚合物太阳能电池的能量转化效率.相关的研究数据和结果也为后续酰亚胺类聚合物受体的设计开发、全聚合物本体异质结活性层的形貌特征和光电转化机制的分析和研究,以及全聚合物太阳能电池器件性能的优化和提升提供了良好的实验基础.  相似文献   

2.
近几年,聚合物太阳能电池的光电转化效率进展迅速,由5%提升至目前的11%以上,应用前景及商业化生产备受关注,但其稳定性问题一直是一个重要的限制因素。无机太阳能电池,如硅电池使用寿命长达25年,而聚合物太阳能电池因其易受氧气、水甚至光的作用而发生降解,使用寿命仅几千小时,且由于其复杂的多层结构、各层不同的降解机制以及加工方法多样,所以仍无法弄清其降解机理。本文概述了对聚合物太阳能电池的稳定性和降解过程的认识,分析讨论了活性层材料的光稳定性、本体异质结器件的反型结构、相分离的影响以及卷对卷加工(R2R)方法所产生的特殊稳定性等问题。  相似文献   

3.
体异质结型聚合物太阳能电池因具有成本低、质量轻、制备工艺简单和柔韧性好等优点,成为光伏技术领域的研究热点,其能量转化效率超过11%。体异质结层作为体异质结型聚合物太阳能电池的核心,其微观形貌影响体异质结型聚合物太阳能电池的开路电压、填充因子和短路电流,进而影响其能量转化效率。因此如何有效调控体异质结的微观形貌是提高体异质结型聚合物太阳能电池能量转换效率的关键问题之一。本文系统介绍了体异质结的形成过程,总结和论述近年发展的体异质结的微观形貌调控方法,以期为体异质结型聚合物太阳能电池的制备提供指导和借鉴。  相似文献   

4.
刘震  徐丰  严大东* 《化学学报》2014,72(2):171-184
近期共轭聚合物-富勒烯太阳能电池的器件效率已突破10%并接近商业应用的标准,在科研和产业领域引起了广泛关注. 伴随器件效率的提升,对有机太阳能电池器件物理过程的认识也在不断深入. 本文就近年来聚合物太阳能电池的代表性工作进行综述,着重介绍提高器件效率的新方法,涵盖三相本体异质结、反向器件、等离激元共振效应和叠层器件等热点技术;并就器件工作的物理过程进行探讨,介绍热激子分离理论、非整数次电荷复合等新观点. 通过材料设计、器件表征优化和理论计算等方法对聚合物太阳能电池进行的综合研究将有力推进这一新兴领域的发展和产业化.  相似文献   

5.
有机太阳能电池的光电转化效率已经突破13%,这主要归因于活性层材料的不断丰富与改进。相比于聚合物,以聚合物为母体的裁剪型分子具有明确的分子量、共轭长度可调、消光系数高、结晶性优良等优势,是一类具有重要发展前景的有机光伏材料。本文简要介绍裁剪型分子在二元本体异质结体系、三元体系、非富勒烯体系中的应用及笔者课题组的相关研究工作,总结了其特点并对其应用前景做了展望。  相似文献   

6.
有机电致发光器件中载流子传输与复合的调控   总被引:1,自引:0,他引:1  
在典型的多异质结器件ITO/NPB/CBP:Ir(ppy)3/Bphen/Alq3/LiF/Al的基础上,利用有机半导体掺杂技术,设计制备了单异质结-单发光层器件、单异质结-p-i-n结构器件、单异质结-双发光层器件及无异质结-混合主体结构器件,并对其光电性能进行了研究和比较.其中,单异质结-p-i-n结构器件的最大功率效率为32.1lm/W,是参考器件的3.1倍,寿命是参考器件的15倍.无异质结-混合主体结构器件的最大功率效率为37.2lm/W,是参考器件的3.5倍,其寿命是参考器件的46倍.研究结果表明,通过对载流子传输层和发光层的优化设计,构建电子、空穴传输平衡的载流子传输层和发光层,减少或取消异质结界面仍可以实现对载流子传输和复合的有效调控,从而使器件的发光效率和寿命同时得到提高.本研究将为高性能OLED的设计提供实验基础.  相似文献   

7.
聚合物本体异质结太阳能电池的光电转换效率与日俱增,获取理想的给/受体材料双连续互穿网络结构仍然是提升器件性能的关键。近期,上海交通大学钟洪亮团队及其合作者发展了一种氟碳溶剂热浸泡后处理策略,优化了活性层薄膜的形貌。氟碳溶剂热浸泡后处理过程能够对活性层薄膜进行快速且均匀的热退火;并且当所选的氟碳溶剂与薄膜加工残留溶剂在临界温度以上互溶成一相时,该混合溶剂将进一步促进薄膜中给/受体材料的再组装过程,形成更有序的纤维状结构,载流子传输效率更高,吸收光谱也有所红移,光电转换效率显著提升。该方法适用于多种给/受体材料组合,包括聚合物/小分子体系、全聚合物体系、全小分子体系,通过较短时间、较低温度的热浸泡处理便能改善薄膜的形貌,获得优异的光电转换性能。  相似文献   

8.
有机太阳能电池光电转化效率已经突破13%,这主要归因于活性层材料的不断丰富与改进。其中,以聚合物为母体的裁剪型分子,其相比于聚合物具有明确的分子量,共轭长度可调,高消光系数,优良的结晶性等优势。本文简要介绍裁剪型分子在二元本体异质结体系,三元体系,非富勒烯体系中的应用及我们组的相关研究工作,总结了其特点并对其应用前景做了展望。  相似文献   

9.
聚合物太阳能电池以其质量轻、成本低、制备工艺简单等优点成为清洁能源利用的研究热点.近年来聚合物太阳能电池光电转换效率逐步提高,单结聚合物太阳能电池的光电转换效率已超过11%,其中器件的界面修饰层成为影响器件光伏性能的重要因素.本文总结了聚合物太阳能电池阴极修饰层的研究进展,分别从无机材料和有机材料两方面介绍了常用的阴极修饰层材料.无机材料包括金属氧化物、金属和金属化合物等,有机材料包括聚合物、富勒烯衍生物以及n-型有机半导体材料等.本文还从阴极修饰层的电学特性、光学特性、能级位置、表面形貌、界面接触等方面讨论了其对聚合物太阳能电池光伏性能的影响,展望了聚合物太阳能电池的发展前景.  相似文献   

10.
<正>相较于传统的无机太阳能电池,有机太阳能电池(OSCs)具备成本低、重量轻、可通过溶液加工方式制备柔性器件等诸多优点,已经成为具有重要应用前景的太阳能利用方式之一~(1,2)。自1995年俞刚等发明了具有本体异质结结构(BHJ)的OSC以来~3,采用共轭聚合物电子给体和小分子电子受体材料构建BHJ光伏活性层的电池能量转换效率  相似文献   

11.
聚合物本体异质结型太阳能电池研究进展   总被引:8,自引:0,他引:8  
聚合物本体异质结型太阳能电池是一种基于电子给体 /受体混合物薄膜的高效率有机光伏器件。文中介绍了近年来聚合物本体异质结型太阳能电池的最新研究进展 ,指出了目前存在的问题和今后的发展方向  相似文献   

12.
近年来随着非富勒烯Y系列明星分子受体的出现, 单结有机太阳能电池的光电转换效率已经突破19%, 但是器件在运行条件下缺乏良好的稳定性, 严重制约了其商业化发展. 因此越来越多的研究聚焦于造成有机太阳能电池性能衰减的原因以及如何提高有机太阳能电池的稳定性. 由于有机太阳能电池复杂的器件结构、不尽相同的活性层材料以及在稳定性研究中条件的差异, 造成了对有机太阳能电池器件衰减研究的困难. 为了更全面地了解有机太阳能电池的衰减过程, 对近些年有机太阳能电池器件衰减过程的研究成果进行综述, 总结了由于给受体材料化学分解、活性层形貌变化、传输层和电极腐蚀以及界面反应等原因造成的器件性能衰减, 并介绍了近些年关于提高器件稳定性的一些策略, 最后对有机太阳能电池的未来发展进行了展望.  相似文献   

13.
主要从光电性能角度总结了近几年硒吩聚合物/寡聚物在有机太阳能电池(OSCs)、场效应晶体管(FETs)、发光二级管(LED)等方面的研究进展。目前,基于聚硒吩并[3,4-b]硒吩-苯并二硒吩(PSeB2)(polyselenopheno[3,4-b]selenophene-co-benzodiselenophene)本体异质结太阳能电池器件的能量转化效率最高,达6.87%;场效应晶体管方面,基于PSeDPP(P28)器件的空穴迁移率最高达1.62cm2.V-1.s-1。基于PFO-DDSTQ(一种硒吩芴基聚合物)的发光二级管,表现出目前基于硒吩化合物的最长波长发光器件,EL光谱峰值约860nm。通过对研究者的研究成果的总结发现,在有机光电器件的应用领域中硒吩聚合物/寡聚物是一种极具应用前景的材料。  相似文献   

14.
有机无机杂化钙钛矿太阳能电池(PSCs)近几年吸引了众多的关注。目前,在反式平板异质结钙钛矿太阳能电池中,最普遍使用的电子传输层材料是富勒烯衍生物PCBM,但是由于其价格昂贵,将会影响钙钛矿太阳能电池的最终产业化。本文开发出一种新的低成本富勒烯衍生物N-甲基-2-戊基[60]富勒烯吡咯烷(NMPFP)来取代PCBM,用于反式钙钛矿太阳能电池的电子传输层。和PCBM电子传输层相比,NMPFP具有更快的电子传输速率。用NMPFP制作的钙钛矿太阳能电池几乎没有迟滞现象,取得了13.83%的光电转换效率,和PCBM电池性能相当。而且,由于NMPFP更强的疏水性,其电池的稳定性优于PCBM电池。本研究表明NMPFP是一种非常有前景的电子传输材料,用于反式平板钙钛矿太阳能电池,可以有效的取代PCBM。  相似文献   

15.
本体异质结有机太阳能电池的活性层形貌对器件性能有着直接的影响。目前广泛应用的形貌表征手段如透射电子显微镜、原子力显微镜等在有机薄膜材料的形貌表征中都存在一定的局限性。共振软X射线散射克服了常用表征手段在有机薄膜表征中对比度低、三维信息缺失等缺点,利用软X射线照射下材料折射率的巨大不同获得更高的对比度,对表征有机太阳能电池活性层的相分离情况、理解微观结构、建立光电转化过程和形貌之间的关系有着重要意义。本文概述了活性层形貌对本体异质结有机太阳能电池性能的影响,介绍了共振软X射线散射的发展历程、基本原理及分析方法。在此基础上,综述了共振软X射线散射在有机太阳能电池形貌问题中应用,并对其应用前景作了展望。  相似文献   

16.
有机/无机杂化金属卤化物钙钛矿半导体材料结合了有机材料良好的溶液可加工性以及无机材料优越的光电特性,近几年受到了热捧,成为太阳能电池领域一颗耀眼的明星. 伴随着钙钛矿薄膜结晶过程和形貌的优化、器件结构的改进以及电极界面材料的开发,这类有机/无机杂化金属卤化物钙钛矿太阳能电池的光电转换效率从最初的3.8%迅速提高到目前最高的22.1%. 其中界面工程在提升器件性能上发挥着极其重要的作用. 本文总结了平面p-i-n型钙钛矿太阳能电池中阴极界面修饰层(CBL)的研究进展. CBL从材料上讲可分为无机金属氧化物、金属或金属盐以及有机材料,从构成上讲可分为单层CBL、双层CBLs以及共混型CBL. 本文对这些类型的CBL分别给予详细的介绍. 最后,我们归纳出CBL在改善器件效率和稳定性上所起的作用以及理想CBL所应满足的要求,希望能为以后阴极界面修饰材料的设计提供一定的借鉴.  相似文献   

17.
聚合物太阳能电池光伏材料的研究进展   总被引:2,自引:0,他引:2  
聚合物太阳能电池由于成本低廉、轻薄灵活、光伏材料分子结构的可设计性等优点成为近年来太阳能电池研究与开发的热点.光电转化效率较低一直是制约此类电池商业化的关键问题,而影响效率的因素包括电池结构、光伏材料的选择、以及电池的组装技术等.本文简要介绍了聚合物太阳能电池的工作原理,对电池光敏层结构的研究进展以及给、受体材料的种类...  相似文献   

18.
全共轭聚合物太阳能电池具有给受体能级可调、吸收范围宽及可溶液加工等优势,已经成为太阳能电池领域的发展趋势。经过材料、体异质结结构、界面及器件结构的优化,器件能量转化效率已经突破10%。其中,共混体系相分离微观结构是制约有机太阳能电池光电转换效率进一步提高的关键因素。在具有结晶组分的共混体系中,由于组分本身结晶相态行为的变化,深入认识和理解结晶与相分离之间的关系以及结晶体系相分离机理的特殊性,更利于有效地调节全共轭聚合物相分离结构。本文从传统聚合物相分离理论和聚合物结晶经典理论出发,结合共轭聚合物结构本身独特性,总结全共轭聚合物共混体系相分离结构特点和难点,重点从热力学和动力学两个方面阐述调控相分离结构基本方法和原理,进一步完善探索共轭聚合物相分离机理。  相似文献   

19.
利用微波协助的Stille缩合聚合反应方法合成了基于双噻吩苯并噻二唑和异靛单元的受体-受体聚合物HFTBT-DA865,并对其热稳定性、光物理性能、电化学性质和本体异质结太阳能电池性能进行了研究.该聚合物易溶于邻二氯苯和邻二甲苯等溶剂,具有优异的溶液加工性能.5%热分解温度为389℃,玻璃化转变温度为168℃,说明其具有较好的热稳定性能.对旋涂速度和温度进行优化,所得太阳能电池器件的光电转换效率为2.28%,开路电压为0.83 V,短路电流为-5.70 mA/cm^2,填充因子为48.9%.电化学性能和密度泛函理论估算结果表明,聚合物与受体材料PC71BM相近的最低未占分子轨道(LUMO)值及其平面性可能是影响光伏性质的重要因素.通过调控共聚单体或优化受体材料,器件性能可进一步提高.对受体-受体(A-A)类聚合物材料太阳能电池性能的研究表明,此类材料是一类潜在的聚合物太阳能电池材料.  相似文献   

20.
通过Stille法将呋喃衍生物苯并二呋喃(BDF)引入共轭主链,合成了苯并二呋喃-呋喃-苯并恶二唑共聚物(Polymer 1,简称P1).以紫外吸收光谱分析了聚合物溶液及其膜的基本光谱特征,通过理论计算进行了分子模拟,并用电化学循环伏安法测定了其基本的电化学性质.采用此材料为给体,PC71BM为受体制备了本体异质结型的有机太阳能电池器件,同时研究了不同给/受体重量比的情况下以及1,8-二碘辛烷作为添加剂的情况下的光伏器件性能.结果表明,P1聚合物在可见光区具有较大吸收.由P1所制得的光伏器件,在AM1.5的模拟太阳光照射条件下最高的转化效率为2.96%,表明BDF基团的引入可实现窄带隙的光电聚合物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号