首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Capacity factor (k′) values of aromatic hydrocarbons with mono-substituted polar-groups are correlated for reversed-phase systems involving stationary phases with C18 or C4 ligands chemically bonded to silica and a binary aqueous eluent containing modifiers: methanol, acetonitrile, tetrahydrofuran, isopropanol, dioxane or dimethoxyethane. The relative retention variations of the solutes are interpreted with special consideration of their interactions with non-polar stationary phases and the molecular structure of the modifiers and solutes. Rules for retention and selectivity optimisation in RP-HPLC systems are given.  相似文献   

2.
The excess adsorption isotherms of acetonitrile, methanol and tetrahydrofuran from water on reversed-phase packings were studied, using 10 different columns packed with C1-C6, C8, C10, C12, and C18 monomeric phases, bonded on the same type of silica. The interpretation of isotherms on the basis of the theory of excess adsorption shows significant accumulation of the organic eluent component on the adsorbent surface on the top of "collapsed" bonded layer. The accumulated amount was shown to be practically independent of the length of alkyl chains bonded to the silica surface. A model that describes analyte retention on a reversed-phase column from a binary mobile phase is developed. The retention mechanism involves a combination of analyte distribution between the eluent and organic adsorbed layer, followed by analyte adsorption on the surface of the bonded phase. A general retention equation for the model is derived and methods for independent measurements of the involved parameters are suggested. The theory was tested by direct measurement of analyte retention from the eluents of varied composition and comparison of the values obtained with those theoretically calculated values. Experimental and theoretically calculated values are in good agreement.  相似文献   

3.
Molecular simulations of water/acetonitrile and water/methanol mobile phases in contact with a C(18) stationary phase were carried out to examine the molecular-level effects of mobile phase composition on structure and retention in reversed-phase liquid chromatography. The simulations indicate that increases in the fraction of organic modifier increase the amount of solvent penetration into the stationary phase and that this intercalated solvent increases chain alignment. This effect is slightly more apparent for acetonitrile containing solvents. The retention mechanism of alkane solutes showed contributions from both partitioning and adsorption. Despite changes in chain structure and solvation, the molecular mechanism of retention for alkane solutes was not affected by solvent composition. The mechanism of retention for alcohol solutes was primarily adsorption at the interface between the mobile and stationary phase, but there were also contributions from interactions with surface silanols. The interaction between the solute and surface silanols become very important at high concentrations of acetonitrile.  相似文献   

4.
A semi-thermodynamic treatment is adopted to account for adsorption or partition of solute molecules from aqueous mobile phases on/in reversed-phase liquid chromatography stationary phases. The theoretical expressions of ln k' versus organic modifier content are tested against 10 data sets covering a variety of solute molecules. It is shown that the mean field approximation, adopted widely in ptevious studies, is marginally valid in aqueous mobile phases, especially in the presence of solute molecules, and the lattice model approximation, which is also used in relevant studies, is a poor approximation. Clear conclusions about the validity of either the adsorption or the partition model for the retention mechanism could not be drawn. The equations of the adsorption model describe all data sets absolutely satisfactorily and yield a physically reasonable picture about the behavior of modifier and solvent at the adsorbed layer. However, the high applicability of the adsorption model may not safely entail the validity of the adsorption mechanism at a molecular level, especially in the case of solutes with small and non-polar molecules, where our analysis gives strong indications about the validity of the partition mechanism. The next steps needed for the final elucidation of the retention mechanism in reversed-phase chromatographic columns are indicated.  相似文献   

5.
Summary The solvation parameter model is used to characterize the retention properties of a cyanopropylsiloxanebonded, silica-based sorbent with methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as mobile phases. The system constants over the composition range 1 to 50 % (v/v) organic solvent indicate that retention occurs because of the relative ease of cavity formation in the solvated stationary phase compared to the same process in the predominantly aqueous mobile phase as well as from more favorable stationary phase interactions with solutes containing π- and n-electrons. The capacity of the solute for dipole-type interactions is not important whereas all hydrogen-bond-type interactions result in reduced retention. Graphing the system constants as a function of mobile phase composition provides a simple mechanism for interpreting the change in capacity of the chromatographic system for retention in terms of changes in the relative weighting of fundamental intermolecular interactions. A comparison is also made with the retention properties of an octadecylsiloxane-bonded, silica-based sorbent with 30 % (v/v) methanol in water as the mobile phase and the extraction characteristics of a porous polymer sorbent with 1 % (v/v) methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as the sample processing solvent. Changes in sorbent selectivity due to selective uptake of the processing solvent are much smaller for the cyanopropylsiloxane-bonded sorbent than the results found for a porous polymer sorbent.  相似文献   

6.
Summary The solvation parameter model is used to characterize the retention properties of a cyanopropylsiloxane-bonded, silica-based sorbent with methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as mobile phases. The system constants over the composition range 1 to 50% (v/v) organic solvent indicate that retention occurs because of the relative ease of cavity formation in the solvated stationary phase compared to the same process in the predominantly aqueous mobile phase as well as from more favorable stationary phase interactions with solutes containing - and n-electrons. The capacity of the solute for dipole-type interactions is not important whereas all hydrogen-bond-type interactions result in reduced retention. Graphing the system constants as a function of mobile phase composition provides a simple mechanism for interpreting the change in capacity of the chromatographic system for retention in terms of changes in the relative weighting of fundamental intermolecular interactions. A comparison is also made with the retention properties of an octadecylsiloxane-bonded, silica-based sorbent with 30% (v/v) methanol in water as the mobile phase and the extraction characteristics of a porous polymer sorbent with 1% (v/v) methanol, acetonitrile, tetrahydrofuran, and isopropanol in water as the sample processing solvent. Changes in sorbent selectivity due to selective uptake of the processing solvent are much smaller for the cyanopropylsiloxane-bonded sorbent than the results found for a porous polymer sorbent.  相似文献   

7.
Allen D  El Rassi Z 《The Analyst》2003,128(10):1249-1256
Three different synthetic routes have been introduced and evaluated for the preparation of amphiphilic silica-based monoliths possessing surface-bound octadecyl ligands and positively charged groups. The amphiphilic silica monoliths (designated as cationic C18-monoliths) have been designed for use in reversed-phase capillary electrochromatography (RP-CEC) with hydro-organic mobile phases. These amphiphilic stationary phases yielded anodic electroosmotic flow (EOF) over a wide range of mobile phase pH. The magnitude of EOF remained constant up to pH 4.0 and then decreased at pH > 4.0 due to the ionization of silanol groups and the subsequent decrease in the net positive surface charge density of the amphiphilic monoliths. The cationic C18-monoliths exhibited reversed-phase chromatography (RPC) behavior toward non-polar solutes (e.g., alkyl benzenes), which parallels that observed with octadecyl-silica (ODS) monoliths. On the other hand, the amphiphilic stationary phases exhibited both non-polar and polar interactions toward slightly polar solutes such as anilines and PTH-amino acids. CEC retention factor k* and velocity factor k*e, which reflects the contribution of the electrophoretic mobility, were evaluated for charged solutes such as anilines and proteins.  相似文献   

8.
The retention of aromatic hydrocarbons with polar groups has been correlated as log k1 versus log k2 for reversed-phase high-performance liquid chromatography systems with different binary aqueous mobile phases containing methanol, acetonitrile or tetrahydrofuran as modifiers. Distinct changes in separation selectivity have been observed between tetrahydrofuran and acetonitrile or methanol systems. Methanol and acetonitrile systems show lower diversity of separation selectivity. The changes in retention and selectivity of aromatic hydrocarbons with various polar groups between any two chromatographic systems with binary aqueous eluents (tetrahydrofuran vs. acetonitrile, tetrahydrofuran vs. methanol and methanol vs. acetonitrile) have been interpreted in terms of molecular interactions of the solute with especially one component of the stationary phase region, i.e. extracted modifier, and stationary phase ordering. The ordering of the stationary phase region caused by modifier type influences the chromatographic selectivity of solutes with different molecular shape.  相似文献   

9.
Ten simplified expressions for the retention factor, k', that arise from either the adsorption or partition mechanism for retention in reversed-phase chromatographic columns are examined in what concerns the model they express and their performance to fit experimental data. In order to test the simplified expressions, which describe the variation of the retention of a solute with the organic modifier content in the mobile phase, a wide range of solutes in mobile phases modified with three different organic modifiers was used. It is shown that a new three-parameter expression of ln k' works more satisfactorily, since it combines simplicity, high applicability and good numerical behavior. It is also shown that the applicability of a simplified equation does not entail the validity of its model and thus no molecular information can be gained from its use.  相似文献   

10.
Whereas the retention rules of achiral compounds are well defined in high-performance liquid chromatography, on the basis of the nature of the stationary phase, some difficulties appear in super/subcritical fluid chromatography on packed columns. This is mainly due to the supposed effect of volatility on retention behaviours in supercritical fluid chromatography (SFC) and to the nature of carbon dioxide, which is not polar, thus SFC is classified as a normal-phase separation technique. Moreover, additional effects are not well known and described. They are mainly related to density changes of the mobile phase or to adsorption of fluid on the stationary phase causing a modification of its surface. It is admitted that pressure or temperature modifications induce variation in the eluotropic strength of the mobile phase, but effects of flow rate or column length on retention factor changes are more surprising. Nevertheless, the retention behaviour in SFC first depends on the stationary phase nature. Working with polar stationary phases induces normal-phase retention behaviour, whereas using non-polar bonded phases induces reversed-phase retention behaviour. These rules are verified for most carbon dioxide-based mobile phases in common use (CO(2)/MeOH, CO(2)/acetonitrile or CO(2)/EtOH). Moreover, the absence of water in the mobile phase favours the interactions between the compounds and the stationary phase, compared to what occurs in hydro-organic liquids. Other stationary phases such as aromatic phases and polymers display intermediate behaviours. In this paper, all these behaviours are discussed, mainly by using log k-log k plots, which allow a simple comparison of stationary phase properties. Some examples are presented to illustrate these retention properties.  相似文献   

11.
中性溶质在反相毛细管电色谱中的保留行为   总被引:1,自引:1,他引:0  
张丽华  邹汉法  施维  倪坚毅  张玉奎 《色谱》1998,16(2):106-110
分别在以甲醇、乙腈、异丙醇和四氢呋喃为有机改性剂的4种二元流动相体系中对中性溶质在反相毛细管电色谱中的保留行为进行了研究。不仅考察了有机改性剂的种类和浓度对电渗淌度的影响,而且建立了溶质容量因子与有机改性剂在流动相中体积分数间的定量关系,此外还对样品在反相毛细管电色谱和反相毛细管高效液相色谱中的保留行为进行了比较,发现中性溶质在这两种分离模式中的容量因子基本相同。  相似文献   

12.
A commercial Chromolith C18 column and two new stationary phases with mixed ligands bonded on the Kromasil silica gel support, SG-MIX and SG-Chol, were characterized using simple tests based on the retention of non-polar, basic and acidic compounds. Polar and methylene selectivity tests in acetonitrile-water and methanol-water mobile phases revealed lower hydrophobicities of the SG-MIX and SG-Chol columns in comparison to the Chromolith column. The columns were further characterized using new test criteria - gradient oligomer capacity and isomeric selectivity and peak symmetry of naphthalene di-sulphonic acids in aqueous mobile phases. The cholesterolic column shows greater gradient oligomer selectivity for the separation of oligoethylene glycol samples than the SG-MIX and the Chromolith columns. Increased retention and peak tailing, but decreased isomeric selectivity for naphthalene-di-sulphonic acids was observed with the SG-MIX column, because of interactions with various polar bonded groups.  相似文献   

13.
14.
The use of supercritical fluids as chromatographic mobile phases allows to obtain rapid separations with high efficiency on packed columns, which could favour the replacement of numerous HPLC methods by supercritical fluid chromatography (SFC) ones. Moreover, despite some unexpected chromatographic behaviours, general retention rules are now well understood, and mainly depend on the nature of the stationary phase. The use of polar stationary phases improves the retention of polar compounds, when C18-bonded silica favours the retention of hydrocarbonaceous compounds. In this sense, reversed-phase and normal-phase chromatography can be achieved in SFC, as in HPLC. However, these two domains are clearly separated in HPLC due to the opposite polarity of the mobile phases used for each method. In SFC, the same mobile phase can be used with both polar and non-polar stationary phases. Consequently, the need for a novel classification of stationary phases in SFC appears, allowing a unification of the classical reversed- and normal-phase domains. In this objective, the paper presents the development of a five-dimensional classification based on retention data for 94-111 solutes, using 28 commercially available columns representative of three major types of stationary phases. This classification diagram is based on a linear solvation energy relationship, on the use of solvation vectors and the calculation of similarity factors between the different chromatographic systems. This classification will be of great help in the choice of the well-suited stationary phase, either in regards of a particular separation or to improve the coupling of columns with complementary properties.  相似文献   

15.
The potential anti-cancer activity of triazines was characterized by the inhibition of the growth of L1210/R71 cells. The retention times for fifteen triazine derivatives were measured by high-performance liquid chromatography on octyl silica and silica gel columns. The slope and intercept values of the plot of the logarithmic capacity factor versus acetonitrile concentration were calculated from the reversed-phase retention measurements. The adsorption properties of the compounds were characterized by the retention data obtained on silica gel columns using high and low concentrations of ammonium salts in the hydro-organic mobile phase. The non-polar, non-polar unsaturated and polar surface areas, the surface energies, the dipole moments and the Van der Waals radii of the molecules were calculated from their chemical structures after energy minimization on the basis of molecular mechanics. Correlation analysis of these parameters showed that the inhibitory effect is dependent on the polar and non-polar surface areas of the molecules. The reversed-phase slope showed a significant correlation with the difference between the accessible and the total non-polar surface areas of the compounds, whereas the intercept values correlated with the non-polar accessible surface area. The adsorption properties of the triazines on silica gel cannot be described by the molecular parameters investigated here.  相似文献   

16.
Selectivity of 15 stationary phases was examined, either commercially available or synthesized in-house. The highest selectivity factors were observed for solute molecules having different polarizability on the 3-(pentabromobenzyloxy)propyl phase (PBB), followed by the 2-(1-pyrenyl)ethyl phase (PYE). Selectivity of fluoroalkane 4,4-di(trifluoromethyl)-5,5,6,6,7,7,7-heptafluoroheptyl (F13C9) phase is lowest among all phases for all compounds except for fluorinated ones. Aliphatic octyl (C8) and octadecyl (C18) phases demonstrated considerable selectivity, especially for alkyl compounds. While PBB showed much greater preference for compounds with high polarizability containing heavy atoms than C18 phase, F13C9 phase showed the exactly opposite tendency. These three stationary phases can offer widely different selectivity that can be utilized when one stationary phase fails to provide separation for certain mixtures. The retention and selectivity of solutes in reversed-phase liquid chromatography is related to the mobile phase and the stationary phase effects. The mobile phase effect, related to the hydrophobic cavity formation around non-polar solutes, is assumed to have a dominant effect on retention upon aliphatic stationary phases such as C8, C18. In a common mobile phase significant stationary phase effect can be attributed to dispersion interaction. Highly dispersive stationary phases such as PBB and PYE retain solutes to a significant extent by (attractive) dispersion interaction with the stationary phase ligands, especially for highly dispersive solutes containing aromatic functionality and/or heavy atoms. The contribution of dispersion interaction is shown to be much less on C18 or C8 phases and was even disadvantageous on F13C9 phase. Structural properties of stationary phases are analyzed and confirmed by means of quantitative structure-chromatographic retention (QSRR) study.  相似文献   

17.

The Carotenoid S is a new C30 bonded silica stationary phase, intended for reversed-phase chromatographic applications, which is more hydrophobic and consequently shows stronger retention in comparison to conventionally used C18 stationary phases. We compared the non-polar selectivities of the columns for homologous alkylbenzenes in acetonitrile—water and methanol–water mobile phases and polar reversed-phase selectivities employing the interaction indices and the Linear Free Energy Relationship models. Further, we investigated possibilities of separations of structurally closely related compounds in the groups of phenolic acids, flavones, phthalic acids and related compounds and of acylglycerols on the new C30 column and with different types of columns for reversed-phase chromatography, including shorter alkyl C4, C8, C18 and phenyl bonded stationary phases. The C30 column has in some aspects properties similar to the non-endcapped Nova-Pak column for separation of some acylglycerols with equal equivalent carbon numbers, but enables separations of longer chain triacylglycerols in a single gradient run.

  相似文献   

18.
19.
Hydrophilic interaction chromatography has been applied for the separation of epirubicin and its analogues using high-purity silica column with aqueous-organic mobile phase. Parameters affecting the chromatographic behavior of the solutes such as organic modifier, buffer pH, ionic strength and sample size, have been investigated. Of utmost importance for successful separation of these analogues is the choice of organic modifier, since it impacts both the solvent selectivity and the ionization of silica silanols as well as buffer solution, and consequently the retention behavior of solutes. Acetonitrile was shown to offer superior separation of these analogues to methanol, isopropanol or tetrahydrofuran. Results of the effects of organic modifier, buffer pH and ion strength indicate that the retention mechanism is a mixed-mode of adsorption and ion exchange. In addition, an irreversible adsorption of these compounds was found on silica in the weakly acidic or neutral mobile phases, and the effect of various factors on irreversible adsorption was also preliminarily discussed. More significantly, these basic compounds have exhibited peaks with a slanted front and a sharp tail, a typical overloading peak profile belonging to the behavior of competitive anti-Langmuir isotherm by increasing the sample size at the experimental conditions.  相似文献   

20.
Previous work suggests that pi-pi interactions between certain solutes and both phenyl and cyano columns can contribute to sample retention and the selectivity of these two column types versus alkylsilica columns. Recent studies also suggest that dipole-dipole interactions are generally unimportant for retention on cyano columns. The present study presents data for 44 solutes, three columns and two different mobile phases that were selected to further test these conclusions. We find that pi-pi interactions can contribute to retention on both cyano and phenyl columns, while dipole-dipole interactions are likely to be significant for the retention of polar aliphatic solutes on cyano columns. When acetonitrile/water mobile phases are used, both pi-pi and dipole-dipole interactions are suppressed, compared to the use of methanol/water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号